Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Membranes (Basel) ; 14(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38535288

ABSTRACT

A simple model is developed for membrane fouling, taking into account two main fouling phenomena: cake formation, due to attached solids on the membrane surface, and pore clogging, due to retained compounds inside the pores. The model is coupled with a simple anaerobic digestion model for describing the dynamics of an anaerobic membrane bioreactor (AnMBR). In simulations, we investigate its qualitative behavior: it is shown that the model exhibits satisfying properties in terms of a flux decrease due to membrane fouling. Comparing simulation and experimental data, the model is shown to predict quite well the dynamics of an AnMBR. The simulated flux best fits the experimental flux with a correlation coefficient r2=0.968 for the calibration data set and r2=0.938 for the validation data set. General discussions are given on possible control strategies to limit fouling and optimize the flux production. We show in simulations that these strategies allow one to increase the mean production flux to 33 L/(h·m2),whereas without control, it was 18 L/(h·m2).

2.
Membranes (Basel) ; 11(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208956

ABSTRACT

This study aims to investigate the effect of operational conditions on organic fouling occurring in a direct contact membrane distillation (DCMD) system used to treat wastewater. A mixed solution of sodium alginate (SA) and bovine serum albumin (BSA) was used as a feed solution to simulate polysaccharides and proteins, respectively, assumed as the main organic foulants. The permeate flux was observed at two feed temperatures 35 and 50 °C, as well as three feed solution pH 4, 6, and 8. Higher permeate flux was observed for higher feed temperature, which allows higher vapor pressure. At higher pH, a smaller particle size was detected with lower permeate flux. A mathematical model based on mass balance was developed to simulate permeate flux with time by assuming (i) the cake formation controlled by attachment and detachment of foulant materials and (ii) the increase in specific cake resistance, the function of the cake porosity, as the main mechanisms controlling membrane fouling to investigate the fouling mechanism responsible of permeate flux decline. The model fitted well with the experimental data with R2 superior to 0.9. High specific cake resistance fostered by small particle size would be responsible for the low permeate flux observed at pH 8.

3.
Chemosphere ; 279: 130524, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34134401

ABSTRACT

This paper deals with the membrane fouling issue in the Direct Contact Membrane Distillation (DCMD) process treating a wasted sludge from an anaerobic digestion process. The main objective is to define an optimal cleaning strategy to alleviate fouling. Using a lab scale DCMD process, a cleaning strategy based on DI water flushing followed by 0.2% sodium hypochlorite (NaOCl) and 3% citric acid (C6H8O7) cleaning was tested with different cleaning frequencies and various chemical cleaning durations at different cross-flow velocities. To avoid severe fouling, the optimal cross-flow velocity was found at 0.18 m/s (0.8 L/min). Moreover, even if higher cross-flow velocity allows higher flux, it could increase fouling risks. For a better membrane regeneration and process productivity, a cleaning of 60 min duration for each chemical cleaning applied every two days was defined as the optimal cleaning strategy. Such conditions allowed the preservation of 75.5% of the initial flux after 96 h of operation. Furthermore, the effect on membrane flux regeneration of DI water flushing, sodium hypochlorite, and citric acid cleaning registered were, 31.52%, 11.95% and 20.65%, respectively. This study revealed that in the MD process treating real wastewater both external and internal fouling are responsible of permeate flux decline due to the accumulation of organic and inorganic matter on the membrane surface as well as within the pores.


Subject(s)
Distillation , Water Purification , Anaerobiosis , Membranes, Artificial , Wastewater
4.
Water Res ; 176: 115750, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32272322

ABSTRACT

In anaerobic membrane bioreactor (AnMBR) treating organic solid waste, acetate is one of the most important precursors to CH4. However, the identity and diversity of anaerobic acetate degraders are largely unknown, possibly due to their slow growth rates and low abundances. Here, we identified acetate-degrading microorganisms in the AnMBR sludges by high-sensitivity stable isotope probing. Degradation of the amended 13C-acetate coincided with production of 13CH4 and 13CO2 during the sludge incubation. High-throughput sequencing of RNA density fractions indicated that the aceticlastic and hydrogenotrophic methanogens, i.e., Methanosaeta sp. (acetate dissimilator) and Methanolinea sp. (acetate assimilator), incorporated 13C-acetate significantly. Remarkably, 22 bacterial species incorporating 13C-acetate were identified, whereas their majority was distantly related to the cultured representatives. Only two of them were the class Deltaproteobacteria-affiliated lineages with syntrophic volatile fatty acid oxidation activities. Phylogenetic tree analysis and population dynamics tracing revealed that novel species of the hydrolyzing and/or fermenting taxa, such as the phyla Bacteroidetes, Chloroflexi and Lentisphaerae, exhibited low relative abundances comparable to that of Methanolinea sp. (0.00011%) during the AnMBR operation, suggesting that these bacteria were involved in anaerobic acetate assimilation. Meanwhile, novel species of the phyla Firmicutes, Synergistetes and Caldiserica, the candidate phyla Aminicenantes and Atribacteria and the candidate division GOUTA4-related clade, as well as the known Deltaproteobacteria members, existed at relatively high abundances (0.00031%-0.31121%) in the reactor, suggesting that these bacterial species participated in anaerobic dissimilation of acetate, e.g., syntrophic acetate oxidation. The results of this study demonstrated the unexpected diversity and ecophysiological features of the anaerobic acetate degraders in the AnMBR treating organic solid waste.


Subject(s)
Methane , Solid Waste , Acetates , Anaerobiosis , Bioreactors , Isotopes , Phylogeny
5.
Chemosphere ; 254: 126810, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32334259

ABSTRACT

Anaerobic membrane bioreactor (AnMBR) is used for the treatment of organic solid waste. Clogging of filtration membrane pores, called membrane fouling, is one of the most serious issues for the sustainable operation of AnMBR. Although the physical and chemical mechanisms of the membrane fouling have been widely studied, the biological mechanisms are still unclear. The biofilm formation and development on the membrane might cause the membrane fouling. In this study, the prokaryotic and eukaryotic microbiomes of the membrane-attached biofilms in an AnMBR treating a model slurry of organic solid waste were investigated by non-destructive microscopy and high-throughput sequencing of 16S and 18S rRNA genes. The non-destructive visualization indicated that the biofilm was layered with different structures. The lowermost residual fouling layer was mesh-like and composed of filamentous microorganisms, while the upper cake layer was mainly the non-dense and non-cell region. The principal coordinate and phylogenetic analyses of the sequence data showed that the biofilm microbiomes were different from the sludge. The lowermost layer consisted of operational taxonomic units that were related to Leptolinea tardivitalis and Methanosaeta concilii (9.53-10.07% and 1.14-1.64% of the total prokaryotes, respectively) and Geotrichum candidum (30.22-82.31% of the total eukaryotes), all of which exhibited the filamentous morphology. Moreover, the upper layer was inhabited by the presumably cake-degrading bacteria and predatory eukaryotes. The biofilm microbiome features were consistent with the microscope-visualized structure. These results demonstrated that the biofilm structure and microbiome were the layer specific, which provides better understanding of biological mechanisms of membrane fouling in the AnMBR.


Subject(s)
Bioreactors/microbiology , Waste Disposal, Fluid/methods , Anaerobiosis , Bacteria , Biofilms/growth & development , Eukaryota , High-Throughput Nucleotide Sequencing , Membranes , Membranes, Artificial , Microbiota , Microscopy , Phylogeny , Prokaryotic Cells , Sewage , Solid Waste
6.
Environ Sci Pollut Res Int ; 26(2): 1061-1071, 2019 Jan.
Article in English | MEDLINE | ID: mdl-28190230

ABSTRACT

Gas sparging is used as a traditional way to control membrane fouling in submerged membrane bioreactors (MBRs) in wastewater treatment. However, the gas sparging accounts for the largest fraction in operational cost to run the MBR systems. In this study, membrane fouling was controlled by integrating scouring media with gas sparging to reduce fouling rate at relatively low operational energy. Comparative study was performed using a fluidized membrane reactor treating synthetic feed solutions between polyethylene terephthalate (PET) scouring media (SM) fluidized by gas sparging (GS), liquid recirculation (LR), and combination of them to control membrane fouling. Addition of PET scouring media reduced the gas flow rate by 67% more with 30% less in fouling rate than gas sparing only. Combined usage of gas sparging and liquid recirculation to fluidize the PET scouring media (LR + GS + SM) showed 37% lower in fouling rate than that obtained by the scouring media fluidized by liquid recirculation (LR + SM) only through the reactor. The LR + GS + SM configuration reduced energy consumption by 90% more than that required by gas sparging alone. Mechanical cleaning driven by fluidizing PET scouring media could reduce membrane fouling due to removing deposit of inorganic particles from membrane surface effectively. However, the PET scouring media was not very effective to reduce membrane fouling caused by organic colloids which are expected to contribute pore fouling significantly.


Subject(s)
Membranes, Artificial , Waste Disposal, Fluid/instrumentation , Biofouling , Bioreactors , Colloids/chemistry , Equipment Design , Polyethylene Terephthalates , Waste Disposal, Fluid/methods , Wastewater/chemistry
7.
Bioresour Technol ; 270: 612-626, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30253898

ABSTRACT

The use of anaerobic membrane bioreactor technology (AnMBR) is rapidly expanding. However, depending on the application, AnMBR design and operation is not fully mature, and needs further research to optimize process efficiency and enhance applicability. This paper reviews state-of-the-art of AnMBR focusing on modelling and control aspects. Quantitative environmental and economic evaluation has demonstrated substantial advantages in application of AnMBR to domestic wastewater treatment, but detailed modelling is less mature. While anaerobic process modelling is generally mature, more work is needed on integrated models which include coupling between membrane performance (including fouling) and the biological process. This should include microbial factors, which are important to generation of specific foulants such as soluble and particulate inert organics. Mature and well-established control tools, including better feedback control strategies are also required for both the process, and for fouling control.


Subject(s)
Bioreactors , Anaerobiosis , Wastewater , Water Purification
8.
Bioresour Technol ; 258: 263-269, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29533886

ABSTRACT

The study presents a mathematical model developed to better understand and control membrane fouling in a single-staged, anaerobic fluidized bed membrane bioreactor (AFMBR) using polyethylene terephthalate (PET) beads as scouring media. The model was based on combining the anaerobic biological model AM2b and a fouling model applied in membrane filtration. The presented model was validated using experimental data obtained by a laboratory scaled AFMBR reactor run during 250 d under various operational conditions. The combined AM2b and fouling model was able to simulate volatile suspended solids, soluble COD concentration, soluble microbial products concentrations and the methane production rate at steady-state condition with R2 of 95% as well as the trans-membrane pressure with R2 of 99%. The model was able to predict dominant fouling mechanism by assessing fouling resistances caused by cake formation and pore blocking separately.


Subject(s)
Waste Disposal, Fluid , Wastewater , Anaerobiosis , Bioreactors , Membranes, Artificial , Polyethylene Terephthalates
9.
Chemosphere ; 191: 136-144, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29032258

ABSTRACT

A mathematical model has been developed to better understand fouling mitigation mechanisms in particle-sparged membrane bioreactor. The model developed herein assumes two fouling mechanisms, (i) the pore blocking leading to the decrease in membrane surface porosity and (ii) the progressive development of compressible cake layer on the membrane surface. The model has been validated by comparison with trans-membrane pressure data registered from the bioreactor filtering a synthetic solution consisting of bentonite, sodium alginate and bovin serum albumine (BSA). Two nonporous media have been tested, Polyethylene terephthalate (PET) beads and silica particles with different dosage (0, 10, 30, 50 and 70% (v/v)). Compared to the experimental data, the model shows satisfactory fitting with R2 ≥ 93%. For both media tested, an optimal dosage to minimize fouling rate was observed at 50% (v/v). Even if both fouling mechanisms have been mitigated by adding fluidized media, pore blocking was more pronounced than cake formation. Moreover, better pore blocking mitigation was observed with PET media (50% (v/v)) having bigger size and lower density than silica particles.


Subject(s)
Biofouling/prevention & control , Bioreactors , Membranes, Artificial , Waste Disposal, Fluid/methods , Alginates , Glucuronic Acid , Hexuronic Acids , Models, Theoretical , Porosity , Pressure , Wastewater
10.
Bioresour Technol ; 245(Pt A): 207-215, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28892693

ABSTRACT

An Anaerobic Membrane BioReactors (AnMBR) model is presented in this paper based on the combination of a simple fouling model and the Anaerobic Model 2b (AM2b) to describe biological and membrane dynamic responses in an AnMBR. In order to enhance the model calibration and validation, Trans-Membrane Pressure (TMP), Total Suspended Solid (TSS), COD, Volatile Fatty Acid (VFA) and methane production were measured. The model shows a satisfactory description of the experimental data with R2≈0.9 for TMP data and R2≈0.99 for biological parameters. This new model is also proposed as a numerical tool to predict the deposit mass composition of suspended solid and Soluble Microbial Products (SMP) on the membrane surface. The effect of SMP deposit on the TMP jump phenomenon is highlighted. This new approach offers interesting perspectives for fouling prediction and the on-line control of an AnMBR process.


Subject(s)
Bioreactors , Wastewater , Anaerobiosis , Fatty Acids, Volatile , Membranes, Artificial , Waste Disposal, Fluid
11.
Bioresour Technol ; 240: 106-114, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28286013

ABSTRACT

This study aims to better understand biofouling by algal organic matters (AOM) during seawater pretreatment by microfiltration (MF). To simulate AOM biofouling, sodium alginate (SA) solutions with three different concentrations (2, 20 and 50ppm) were filtered in dead-end mode with MF membrane. A modelling approach with blocking laws was used to identify the fouling mechanisms behind flux decline with time. The effect of SA concentration and cations such as Na+ (0.6M) and Ca2+ (0.015M) addition to SA solution on fouling mechanisms was studied. While for low SA concentration (2ppm), fouling occurs within two phases: a pore constriction phase followed by cake formation phase, for high SA concentration (50ppm), fouling occurs within only one phase controlled by cake formation. The addition of Na+ (0.6M) or Ca2+ (0.015M) to SA solution mitigates membrane fouling, however, the addition of both cations enhances fouling by formation of dense cake layer on membrane.


Subject(s)
Alginates , Biofouling , Seawater , Glucuronic Acid , Hexuronic Acids , Membranes, Artificial , Salinity , Water Purification
12.
Water Res ; 46(8): 2637-50, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22397816

ABSTRACT

In this paper, we investigate the fouling mechanisms responsible for MF and UF membrane flux decline in Anaerobic Membrane Bioreactors (AnMBR). We have used the fouling mechanism models proposed by Hermia (1982), namely pore constriction, cake formation, complete blocking and intermediate blocking. Based on an optimization approach and using experimental data extracted from the literature, we propose a systematic procedure for identifying the most likely fouling mechanism in play. Short-term as well as long-term experiments are considered and discussed. It was found that short-term experiments are usually characterized by two fouling phases during which the same fouling mechanism or two different mechanisms affect the process. In contrast, in long-term experiments involving cleaning cycles, membrane fouling appears to be better ascribed to one phase only. The impact of abiotic parameters on membrane fouling mechanisms is reviewed and discussed in the light of these results. Finally, it is shown that the mechanism most responsible for membrane fouling in an AnMBR is cake formation. This main result will be useful for the future development of simple integrated models for optimization and control.


Subject(s)
Biofouling , Bioreactors/microbiology , Membranes, Artificial , Algorithms , Anaerobiosis , Porosity , Sewage/chemistry , Temperature , Time Factors , Ultrafiltration
SELECTION OF CITATIONS
SEARCH DETAIL
...