Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 16675, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30420698

ABSTRACT

Magnetic phase transitions are a manifestation of competing interactions whose behavior is critically modified by defects and becomes even more complex when topological constraints are involved. In particular, the investigation of skyrmions and skyrmion lattices offers insight into fundamental processes of topological-charge creation and annihilation upon changing the magnetic state. Nonetheless, the exact physical mechanisms behind these phase transitions remain unresolved. Here, we show numerically that it is possible to collectively reverse the polarity of a skyrmion lattice in a field-induced first-order phase transition via a transient antiskyrmion-lattice state. We thus propose a new type of phase transformation where a skyrmion lattice inverts to another one due to topological constraints. In the presence of even a single defect, the process becomes a second-order phase transition with gradual topological-charge melting. This radical change in the system's behavior from a first-order to a second-order phase transition demonstrates that defects in real materials could prevent us from observing collective topological phenomena. We have systematically compared ultra-thin films with isotropic and anisotropic Dzyaloshinskii-Moriya interactions (DMIs), and demonstrated a nearly identical behavior for such technologically relevant interfacial systems.

2.
J Phys Condens Matter ; 30(42): 425803, 2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30187891

ABSTRACT

Structural defects on an atomic level can crucially impact the magnetic properties of a material. We study this phenomenon by means of magnetometry and powder neutron diffraction on a stoichiometric, monoclinic pyrrhotite (Fe7S8), which is a classic omission structure with a magnetic anomaly at about 30 K. The initial structural distortion of the pyrrhotite at 300 K caused by the vacancy arrangement decreases upon cooling, and simultaneous to the magnetic anomaly the anisotropic contraction of the unit cell homogenizes the covalency of the Fe-Fe bonds with lengths less than 3.0 Å and the Fe-S-Fe bond angles. These changes on the atomic level affect the spin-orbit coupling and the super-exchange interactions in Fe7S8, and trigger the low-temperature magnetic anomaly within a crystallographically stable system.

3.
J Phys Condens Matter ; 27(8): 086001, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25654427

ABSTRACT

The net spontaneous magnetization of antiferromagnets with modified surfaces was computed using mean-field theory. For ordinary phase transitions the net magnetization of uncompensated AFM is smaller than the surface magnetization and the Néel vector, whereas for extraordinary phase transitions the net magnetization is larger than the surface magnetization and the Néel vector at finite temperature. Moreover, the temperature dependence of these three observable internal parameters changes drastically with the surface properties, i.e. the surface exchange coupling JS. Based on these findings, contour plots showing different regions of magnetization and Néel vector behavior as functions of temperature and surface exchange strength are proposed.

4.
Phys Rev Lett ; 110(8): 087206, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23473197

ABSTRACT

CoO/Al-doped ZnO (AZO) multilayers exhibit ferromagnetism up to ~300 K. The magnetic behavior oscillates with odd vs even number of Co layers in the insulating antiferromagnetic CoO and (separately) with the thickness of the AZO layers and vanishes if AZO is replaced by intrinsic ZnO. Magnetization is due to uncompensated (111) ferromagnetic planes of insulating CoO for odd numbers of atomic planes per layer that are coupled together via RKKY exchange mediated by electron carriers in the nonmagnetic AZO layers. The period of the oscillation with AZO thickness qualitatively matches the Fermi wave vector calculated from the carrier concentration measured by ordinary Hall effect. Magnetic polarization of the AZO carriers is confirmed via an anomalous Hall effect that is proportional to the magnetization.


Subject(s)
Cobalt/chemistry , Electrons , Magnets/chemistry , Oxides/chemistry , Zinc Oxide/chemistry
5.
Phys Rev Lett ; 107(5): 057202, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21867093

ABSTRACT

In this study we report on jumps in the magnetic moment of the hemo-ilmenite solid solution (x)FeTiO(3)-(1-x)Fe(2)O(3) above Fe(III) percolation at low temperature (T<3 K). The first jumps appear at 2.5 K, one at each side of the magnetization loop, and their number increases with decreasing temperature and reaches 5 at T=0.5 K. The jumps occur after field reversal from a saturated state and are symmetrical in the trigger field and intensity with respect to the field axis. Moreover, an increase of the sample temperature by 2.8% at T=2.0 K indicates the energy released after the ignition of the magnetization jump, as the spin-currents generated by the event are dissipated in the lattice. The magnetization jumps are further investigated by Monte Carlo simulations, which show that these effects are a result of magnetic interaction-induced partitioning on a sublattice level.

SELECTION OF CITATIONS
SEARCH DETAIL
...