Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-19, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37811543

ABSTRACT

The present study was proposed to model full-length HBV-RT and investigate the intermolecular interactions of known inhibitor and libraries of phytocompounds to probe the potential natural leads by in silico and in vitro studies. Homology modeling of RT was performed by Phyre2 and Modeller and virtual screening of ligands implemented through POAP pipeline. Molecular dynamics (MD) simulation (100 ns) and MM-GBSA calculations were performed using Schrodinger Desmond and Prime, respectively. Phytocompounds probable host protein targets gene set pathway enrichment and network analysis were executed by KEGG database and Cytoscape software. Prioritized plant extracts/enriched fraction LC-MS analysis was performed and along with pure compound, RT inhibitory activity, time-dependent HBsAg and HBeAg secretion, and intracellular HBV DNA, and pgRNA by qRT-PCR was performed in HepG2.2.15 cell line. Among the screened chemical library of 268 phytocompounds from 18 medicinal plants, 15 molecules from Terminalia chebula (6), Bidens pilosa (5), and Centella asiatica (4)) were identified as potential inhibitors of YMDD and RT1 motif of HBV-RT. MD simulation demonstrated stable interactions of 15 phytocompounds with HBV-RT, of which 1,2,3,4,6-Pentagalloyl Glucose (PGG) was identified as lead molecule. Out of 15 compounds, 11 were predicted to modulate 39 proteins and 15 molecular pathways associated with HBV infection. TCN and TCW (500 µg/mL) showed potent RT inhibition, decreased intracellular HBV DNA, and pgRNA, and time-dependent inhibition of HBsAg and HBeAg levels compared to PGG and Tenofovir Disoproxil Fumarate. We propose that the identified lead molecules from T. chebula as promising and cost-effective moieties for the management of HBV infection.Communicated by Ramaswamy H. Sarma.

2.
Front Cell Infect Microbiol ; 13: 1106293, 2023.
Article in English | MEDLINE | ID: mdl-37113136

ABSTRACT

Introduction: Careya arborea, Punica granatum, and Psidium guajava are traditionally used to treat diarrheal diseases in India and were reported to show anti-Cholera toxin activity from our earlier studies. As polyphenols are reported to neutralize Cholera toxin (CT), the present study investigated the inhibitory activity of selected polyphenols from these plants against CTB binding to GM1 receptor using in silico, in vitro, and in vivo approaches. Methods: Molecular modelling approach was used to investigate the intermolecular interactions of selected 20 polyphenolic compounds from three plants with CT using DOCK6. Based on intermolecular interactions, two phenolic acids, Ellagic acid (EA) and Chlorogenic acid (CHL); two flavonoids, Rutin (RTN) and Phloridzin (PHD) were selected along with their respective standards, Gallic acid (GA) and Quercetrin (QRTN). The stability of docked complexes was corroborated using molecular dynamics simulation. Furthermore, in vitro inhibitory activity of six compounds against CT was assessed using GM1 ELISA and cAMP assay. EA and CHL that showed prominent activity against CT in in vitro assays were investigated for their neutralizing activity against CT-induced fluid accumulation and histopathological changes in adult mouse. Results and discussion: The molecular modelling study revealed significant structural stability of the CT-EA, CT-CHL, and CT-PHD complexes compared to their respective controls. All the selected six compounds significantly reduced CT-induced cAMP levels, whereas EA, CHL, and PHD exhibited > 50% binding inhibition of CT to GM1. The EA and CHL that showed prominent neutralization activity against CT from in vitro studies, also significantly decreased CT-induced fluid accumulation and histopathological changes in adult mouse. Our study identified bioactive compounds from these three plants against CT-induced diarrhea.


Subject(s)
Cholera , Pomegranate , Psidium , Mice , Animals , Polyphenols/pharmacology , Pomegranate/metabolism , Psidium/metabolism , G(M1) Ganglioside/metabolism , Cholera Toxin/metabolism , Diarrhea/drug therapy
3.
Toxins (Basel) ; 14(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36287918

ABSTRACT

Careya arborea, Punica granatum, Psidium guajava, Holarrhena antidysenterica, Aegle marmelos, and Piper longum are commonly used traditional medicines against diarrhoeal diseases in India. This study investigated the inhibitory activity of these plants against cytotoxicity and enterotoxicity induced by toxins secreted by Vibrio cholerae. Cholera toxin (CT) and non-membrane damaging cytotoxin (NMDCY) in cell free culture filtrate (CFCF) of V. cholerae were quantified using GM1 ELISA and cell-based assays, respectively. Hydro-alcoholic extracts of these plants and lyophilized juice of P. granatum were tested against CT-induced elevation of cAMP levels in CHO cell line, binding of CT to ganglioside GM1 receptor and NMDCY-induced cytotoxicity. Significant reduction of cAMP levels in CFCF treated CHO cell line was observed for all extracts except P. longum. C. arborea, P. granatum, H. antidysenterica and A. marmelos showed >50% binding inhibition of CT to GM1 receptor. C. arborea, P. granatum, and P. guajava effectively decreased cytotoxicity and morphological alterations caused by NMDCY in CHO cell line. Further, the efficacy of these three plants against CFCF-induced enterotoxicity was seen in adult mice ligated-ileal loop model as evidenced by decrease in volume of fluid accumulation, cAMP levels in ligated-ileal tissues, and histopathological changes in intestinal mucosa. Therefore, these plants can be further validated for their clinical use against cholera.


Subject(s)
Cholera , Plants, Medicinal , Toxins, Biological , Vibrio cholerae , Cricetinae , Mice , Animals , Cholera/drug therapy , Cholera Toxin/toxicity , G(M1) Ganglioside/pharmacology , G(M1) Ganglioside/metabolism , Vibrio cholerae/metabolism , Toxins, Biological/metabolism , Cytotoxins/metabolism , CHO Cells
4.
Antioxidants (Basel) ; 11(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35739991

ABSTRACT

BACKGROUND AND OBJECTIVE: Doxorubicin is a widely used chemotherapeutic agent that causes oxidative stress leading to cardiotoxicity, hepatotoxicity, and nephrotoxicity. In contrast, Theobroma cacao L. has been recorded as an anticancer agent and found to be protective against multiple chemical-induced organ injuries, including heart, liver, and kidney injuries. The present study investigated the possible role of extracts from T. cacao beans for organ-protective effects in doxorubicin-induced toxicity in mice bearing Ehrlich ascites carcinoma (EAC). METHODOLOGY: After survival analysis in rodents, cocoa bean extract (COE) was investigated for its efficacy against EAC-induced carcinoma and its organ-protective effect against doxorubicin-treated mice with EAC-induced carcinoma. RESULTS: Significant reductions in EAC and doxorubicin-induced alterations were observed in mice administered the COE, either alone or in combination with doxorubicin. Furthermore, COE treatment significantly increased the mouse survival time, life span percentage, and antioxidant defense system. It also significantly improved cardiac, hepatic, and renal function biomarkers and markers for oxidative stress, and it also reduced doxorubicin-induced histopathological changes. CONCLUSION: COE acted against doxorubicin-induced organ toxicity; potent antioxidant and anticancer activities were also reflected by the COE itself. The COE may therefore serve as an adjuvant nutraceutical in cancer chemotherapy.

5.
PLoS One ; 17(4): e0259757, 2022.
Article in English | MEDLINE | ID: mdl-35421091

ABSTRACT

Theobroma cacao L. is a commercially important food/beverage and is used as traditional medicine worldwide against a variety of ailments. In the present study, computational biology approaches were implemented to elucidate the possible role of cocoa in cancer therapy. Bioactives of cocoa were retrieved from the PubChem database and queried for targets involved in cancer pathogenesis using BindingDB (similarity index ≥0.7). Later, the protein-protein interactions network was investigated using STRING and compound-protein via Cytoscape. In addition, intermolecular interactions were investigated via molecular docking. Also, the stability of the representative complex Hirsutrin-epidermal growth factor receptor (EGFR) complex was explored using molecular dynamics simulations. Crude extract metabolite profile was carried out by LC-MS. Further, anti-oxidant and cytotoxicity studies were performed in Chinese hamster ovary (normal) and Ehrlich ascites carcinoma (cancer) cell lines. Herein, the gene set enrichment and network analysis revealed 34 bioactives in cocoa targeting 50 proteins regulating 21 pathways involved in cancer and oxidative stress in humans. EGFR scored the highest edge count amongst 50 targets modulating 21 key pathways. Hence, it was selected as a promising anticancer target in this study. Structural refinement of EGFR was performed via all-atom molecular dynamics simulations in explicit solvent. A complex EGFR-Hirsutrin showed the least binding energy (-7.2 kcal/mol) and conserved non-bonded contacts with binding pocket residues. A stable complex formation of EGFR-Hirsutrin was observed during 100 ns MD simulation. In vitro studies corroborated antioxidant activity for cocoa extract and showed a significantly higher cytotoxic effect on cancer cells compared to normal cells. Our study virtually predicts anti-cancer activity for cocoa affected by hirsutrin inhibiting EGFR. Further wet-lab studies are needed to establish cocoa extract against cancer and oxidative stress.


Subject(s)
Cacao , Neoplasms , Animals , Antioxidants/metabolism , CHO Cells , Cacao/chemistry , Cell Survival , Cricetinae , Cricetulus , ErbB Receptors/metabolism , Humans , In Vitro Techniques , Molecular Docking Simulation , Network Pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...