Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 16(3): 5036, 2015 May 08.
Article in English | MEDLINE | ID: mdl-26103474

ABSTRACT

Monte Carlo simulation is deemed to be the leading algorithm for accurate dose calculation with electron beams. Patient anatomy (contours and tissue densities) as well as irradiation geometry is accounted for. The accuracy of the Monitor Unit (MU) determination is one essential aspect of a treatment planning system. Patient-specific quality assurance of a Monte Carlo plan usually involves verification of the MUs with an independent simpler calculation approach, in which flat geometry is to be assumed. The magnitude of the discrepancies between flat and varied surfaces for a few scenarios has been investigated in this study. The ability to predict MUs for various surface topologies by the commercial electron Monte Carlo implementation from Varian Eclipse system (Eclipse eMC) has been evaluated and compared to the Generalized Gaussian Pencil Beam (GGPB) algorithm. Ten phantoms with different topologies were constructed of water-equivalent material. Measurements with a parallel plate ionization chamber were performed using these phantoms to gauge their relative impact on outputs for 6, 9, 12, 16, and 20MeV electron beams from a Varian TrueBeam with cone sizes ranging from 6 × 6 cm2 to 25 × 25 cm2. The corresponding Monte Carlo simulations of the measured geometries were carried out using the CT scans of these phantoms. The results indicated that the Eclipse eMC algorithm can predict these output changes within 3% for most scenarios. However, at the lowest energy, the discrepancy was the greatest, up to 6%. In comparison, the Eclipse GGPB algorithm had much worse agreement, with discrepancies up to 17% at the lowest energies.


Subject(s)
Models, Statistical , Monte Carlo Method , Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Computer Simulation , Electrons , Humans , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity
2.
Med Dosim ; 38(3): 268-73, 2013.
Article in English | MEDLINE | ID: mdl-23582702

ABSTRACT

Frequently, in radiation therapy one must treat superficial lesions on cancer patients; these are at or adjacent to the skin. Megavoltage photon radiotherapy penetrates through the skin to irradiate deep-seated tumors, with skin-sparing property. Hence, to treat superficial lesions, one must use a layer of scattering material to feign as the skin surface. Although megavoltage electron beams are used for superficial treatments, one occasionally needs to enhance the dose near the surface. Such is the function of a "bolus," a natural or synthetically developed material that acts as a layer of tissue to provide a more effective treatment to the superficial lesions. Other uses of boluses are to correct for varying surface contours and to add scattering material around the patient's surface. Materials used as bolus vary from simple water to metal and include various mixtures and compounds. Even with the modernization of the technology for external-beam therapy and the emergence of various commercial boluses, the preparation and utilization of a bolus in clinical radiotherapy remains an art. Considering the varying experiences and practices, this paper briefly summarizes available boluses that have been proposed and are employed in clinical radiotherapy. Although this review is not exhaustive, it provides some initial guidance and answers questions that may arise in clinical practice.


Subject(s)
Electrons/therapeutic use , Neoplasms/radiotherapy , Photons/therapeutic use , Humans , Tomography, X-Ray Computed
3.
J Radiol Prot ; 29(1): 37-50, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19225181

ABSTRACT

We have investigated the dosimetric properties of a commercial kilovoltage cone beam computerised tomography (kV-CBCT) system. The kV-CBCT doses were measured in 16 and 32 cm diameter standard cylindrical Perspex computerised tomography (CT) and Rando anthropomorphic phantoms using 125 kVp and 1.0-2.0 mA s per projection. We also measured skin doses using thermoluminescence dosimeters placed on the skin surfaces of prostate cancer patients undergoing kV-kV image matching for daily set-up. The skin doses from kV-kV image matching of prostate cancer patients on the anterior and lateral skin surfaces ranged from 0.03 +/- 0.01 to 0.64 +/- 0.01 cGy depending on the beam filtration and technique factors employed. The mean doses on the Rando phantom ranged from 3.0 +/- 0.1 to 5.1 +/- 0.3 cGy for full-fan scans and from 3.8 +/- 0.1 to 6.6 +/- 0.2 cGy for half-fan scans using 125 kVp and 2 mA s per projection. The isocentre cone beam dose index (CBDI) in the 16 and 32 cm Perspex phantoms is 4.65 and 1.81 cGy, respectively (using a 0.6 cm(3) Capintec PR06C Farmer chamber) for full-fan scans, and the corresponding normalised CBDIs are 0.72 and 0.28 cGy/100 mA s, respectively. The mean weighted CBDIs are 4.93 and 2.14 cGy, and the normalised weighted CBDIs are 0.76 and 0.33 cGy/100 mA s for the 16 and 32 cm phantoms, respectively (full-fan scans). The normalised weighted CBDI for the half-fan scan is 0.41 cGy/100 mA s for the 32 cm diameter phantom. All measurements of the CBDI using the 0.6 cm(3) Farmer chamber are within 2-5% of measurements taken with the 100 mm CT chamber. The CBDI technique and definitions can be used to benchmark CBCT systems and to provide estimates of imaging doses to patients undergoing on-board imager (OBI)/CBCT image guided radiation therapy.


Subject(s)
Cone-Beam Computed Tomography/instrumentation , Radiation Dosage , Radiotherapy, Computer-Assisted/instrumentation , Cone-Beam Computed Tomography/adverse effects , Equipment Design , Equipment Safety , Humans , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Phantoms, Imaging , Radiation Tolerance , Radiotherapy Dosage , Radiotherapy, Computer-Assisted/adverse effects , Skin/radiation effects , Thermoluminescent Dosimetry
4.
Med Phys ; 31(2): 264-76, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15000612

ABSTRACT

The convolution/superposition algorithm for computing dose from photon beams in radiation therapy planning requires knowledge of the energy spectrum. The algorithm can compute the dose for a polyenergetic beam as the weighted sum of the individual dose contributions from monoenergetic beams. In this study we exploit interface effects apparent in the dose distributions to discriminate among spectra of high energy photon beams. We have studied the sensitivity of the depth dose distribution to the energy components using a hypothetical beam for various field sizes and depths in water and water-lung-water media. Six theoretical spectra were simulated. We compared depth dose data from these spectra using three quantitative measures which are inherently free of normalization ambiguities: for homogeneous water, the ratio D20/D10 and a logarithmic derivative in the buildup region LD(build-up) and for inhomogeneous lung/water, the lung correction factor (CF). It was found that the ability of both the CF and the LD(build-up) tests to discriminate between the various theoretical spectra were superior to that of the D20/D10 test. This discriminating power of the CF test decreases with increasing field size due to restored electronic equilibrium. The CF test, though, has some advantages over the LD(build-up) test since it is less prone to electron contamination issues and numerical errors. A practical example with a 15 MV photon beam illustrates the process. Consequently, we suggest that as part of a beam-commissioning methodology, designated electronic disequilibrium test cases be implemented in unambiguously determining the correct energy spectrum to be used.


Subject(s)
Lung/pathology , Algorithms , Electrons , Humans , Models, Statistical , Phantoms, Imaging , Photons , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Water
5.
Med Phys ; 30(4): 563-73, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12722808

ABSTRACT

Validation experiments have been conducted using 6 and 15 MV photons in inhomogeneous (water/lung/water) media to benchmark the accuracy of the DPM Monte Carlo code for photon beam dose calculations. Small field sizes (down to 2 x 2 cm2) and low-density media were chosen for this investigation because the intent was to test the DPM code under conditions where lateral electronic disequilibrium effects are emphasized. The treatment head components of a Varian 21EX linear accelerator, including the jaws (defining field sizes of 2 x 2, 3 x 3 and 10 x 10 cm2), were simulated using the BEAMnrc code. The phase space files were integrated within the DPM code system, and central axis depth dose and profile calculations were compared against diode measurements in a homogeneous water phantom in order to validate the phase space. Results of the homogeneous phantom study indicated that the relative differences between DPM calculations and measurements were within +/- 1% (based on the rms deviation) for the depth dose curves; relative profile dose differences were on average within +/- 1%/1 mm. Depth dose and profile measurements were carried out using an ion-chamber and film, within an inhomogeneous phantom consisting of a 6 cm slab of lung-equivalent material embedded within solid water. For the inhomogeneous phantom experiment, DPM depth dose calculations were within +/- 1% (based on the rms deviation) of measurements; relative profile differences at depths within and beyond the lung were, on average, within +/- 2% in the inner and outer beam regions, and within 1-2 mm distance-to-agreement within the penumbral region. Relative point differences on the order of 2-3% were within the estimated experimental uncertainties. This work demonstrates that the DPM Monte Carlo code is capable of accurate photon beam dose calculations in situations where lateral electron disequilibrium effects are pronounced.


Subject(s)
Algorithms , Lung/physiology , Radiometry/instrumentation , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Software , Anisotropy , Computer Simulation , Humans , Lung Neoplasms/radiotherapy , Models, Biological , Models, Statistical , Monte Carlo Method , Phantoms, Imaging , Photons , Radiometry/standards , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/standards , Reproducibility of Results , Sensitivity and Specificity , United States
6.
J Appl Clin Med Phys ; 4(1): 25-39, 2003.
Article in English | MEDLINE | ID: mdl-12540816

ABSTRACT

In this study, a dosimetric evaluation of the new Kodak extended dose range (EDR) film versus ionization measurements has been conducted in homogeneous solid water and water-lung equivalent layered heterogeneous phantoms for a relevant range of field sizes (up to a field size of 25x25 cm2 and a depth of 15 cm) for 6 and 15 MV photon beams from a linear accelerator. The optical density of EDR film was found to be linear up to about 350 cGy and over-responded for larger fields and depths (5% for 25x25 cm2 at depth of 15 cm compared to a 10x10 cm2, 5 cm depth reference value). Central axis depth dose measurements in solid water with the film in a perpendicular orientation were within 2% of the Wellhöfer IC-10 measurements for the smaller field sizes. A maximum discrepancy of 8.4% and 3.9% was found for the 25x25 cm2 field at 15 cm depth for 6 and 15 MV photons, respectively (with curve normalization at a depth of 5 cm). Compared to IC-10 measurements, film measured central axis depth dose inside the lung slab showed a slight over-response (at most 2%). At a depth of 15 cm in the lung phantom the over-response was found to be 7.4% and 3.7% for the 25x25 cm2 field for 6 and 15 MV photons, respectively. When results were presented as correction factors, the discrepancy between the IC-10 and the EDR was greatest for the lowest energy and the largest field size. The effect of the finite size of the ion chamber was most evident at smaller field sizes where profile differences versus film were observed in the penumbral region. These differences were reduced at larger field sizes and in situations where lateral electron transport resulted in a lateral spread of the beam, such as inside lung material. Film profiles across a lung tumor geometry phantom agreed with the IC-10 chamber within the experimental uncertainties. From this investigation EDR film appears to be a useful medium for relative dosimetry in higher dose ranges in both water and lung equivalent material for moderate field sizes and depths.


Subject(s)
Film Dosimetry/instrumentation , Film Dosimetry/methods , Lung/radiation effects , Photons , Radiation Effects , Radiometry/instrumentation , Radiometry/methods , Radiotherapy, High-Energy/methods , Water/metabolism , Dose-Response Relationship, Radiation , Phantoms, Imaging , Radiation, Ionizing , Technology, Radiologic/instrumentation , Technology, Radiologic/methods
7.
Phys Med Biol ; 47(20): 3629-41, 2002 Oct 21.
Article in English | MEDLINE | ID: mdl-12433124

ABSTRACT

We have investigated the dependence of the measured optical density on the incident beam energy, field size and depth for a new type of film, Kodak extended dose range (Kodak EDR). Film measurements have been conducted over a range of field sizes (3 x 3 cm2 to 25 x 25 cm2) and depths (d(max) to 15 cm), for 6 MV and 15 MV photons within a solid water phantom, and the variation in sensitometric response (net optical density versus dose) has been reported. Kodak EDR film is found to have a linear response with dose, from 0 to 350 cGy, which is much higher than that typically seen for Kodak XV film (0-50 cGy). The variation in sensitometric response for Kodak EDR film as a function of field size and depth is observed to be similar to that of Kodak XV film; the optical density varied in the order of 2-3% for field sizes of 3 x 3 cm2 and 10 x 10 cm2 at depths of d(max), 5 cm and 15 cm in the phantom. Measurements for a 25 x 25 cm2 field size showed consistently higher optical densities at depths of d(max), 5 cm and 15 cm, relative to a 10 x 10 cm2 field size at 5 cm depth, with 4-5% differences noted at a depth of 15 cm. Fractional depth dose and profiles conducted with Kodak EDR film showed good agreement (2%/2 mm) with ion chamber measurements for all field sizes except for the 25 x 25 cm2 at depths greater than 15 cm, where differences in the order of 3-5% were observed. In addition, Kodak EDR film measurements were found to be consistent with those of Kodak XV film for all fractional depth doses and profiles. The results of this study indicate that Kodak EDR film may be a useful tool for relative dosimetry at higher dose ranges.


Subject(s)
Film Dosimetry/instrumentation , Materials Testing , Photons , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy, High-Energy/instrumentation , Film Dosimetry/classification , Phantoms, Imaging , Quality Control , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...