Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 369(6509)2020 09 11.
Article in English | MEDLINE | ID: mdl-32913071

ABSTRACT

Robock claims that our analysis fails to acknowledge that pan-tropical surface cooling caused by large volcanic eruptions may mask El Niño warming at our central Pacific site, potentially obscuring a volcano-El Niño connection suggested in previous studies. Although observational support for a dynamical response linking volcanic cooling to El Niño remains ambiguous, Robock raises some important questions about our study that we address here.

2.
Science ; 367(6485): 1477-1481, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32217726

ABSTRACT

The El Niño-Southern Oscillation (ENSO) shapes global climate patterns yet its sensitivity to external climate forcing remains uncertain. Modeling studies suggest that ENSO is sensitive to sulfate aerosol forcing associated with explosive volcanism but observational support for this effect remains ambiguous. Here, we used absolutely dated fossil corals from the central tropical Pacific to gauge ENSO's response to large volcanic eruptions of the last millennium. Superposed epoch analysis reveals a weak tendency for an El Niño-like response in the year after an eruption, but this response is not statistically significant, nor does it appear after the outsized 1257 Samalas eruption. Our results suggest that those models showing a strong ENSO response to volcanic forcing may overestimate the size of the forced response relative to natural ENSO variability.

3.
Science ; 339(6115): 67-70, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23288537

ABSTRACT

The El Niño-Southern Oscillation (ENSO) drives large changes in global climate patterns from year to year, yet its sensitivity to continued anthropogenic greenhouse forcing is uncertain. We analyzed fossil coral reconstructions of ENSO spanning the past 7000 years from the Northern Line Islands, located in the center of action for ENSO. The corals document highly variable ENSO activity, with no evidence for a systematic trend in ENSO variance, which is contrary to some models that exhibit a response to insolation forcing over this same period. Twentieth-century ENSO variance is significantly higher than average fossil coral ENSO variance but is not unprecedented. Our results suggest that forced changes in ENSO, whether natural or anthropogenic, may be difficult to detect against a background of large internal variability.


Subject(s)
Anthozoa/growth & development , Climate Change , Fossils , Animals , Islands
4.
Science ; 311(5757): 63-6, 2006 Jan 06.
Article in English | MEDLINE | ID: mdl-16400144

ABSTRACT

It is currently unclear whether observed pelagic ecosystem responses to ocean warming, such as a mid-1970s change in the eastern North Pacific, depart from typical ocean variability. We report variations in planktonic foraminifera from varved sediments off southern California spanning the past 1400 years. Increasing abundances of tropical/subtropical species throughout the 20th century reflect a warming trend superimposed on decadal-scale fluctuations. Decreasing abundances of temperate/subpolar species in the late 20th century indicate a deep, penetrative warming not observed in previous centuries. These results imply that 20th-century warming, apparently anthropogenic, has already affected lower trophic levels of the California Current.


Subject(s)
Climate , Ecosystem , Eukaryota , Geologic Sediments , Zooplankton , Animals , California , Environment , Eukaryota/classification , Greenhouse Effect , Population Density , Population Dynamics , Principal Component Analysis , Seasons , Temperature , Time Factors , Zooplankton/classification
5.
Nature ; 424(6946): 271-6, 2003 Jul 17.
Article in English | MEDLINE | ID: mdl-12867972

ABSTRACT

Any assessment of future climate change requires knowledge of the full range of natural variability in the El Niño/Southern Oscillation (ENSO) phenomenon. Here we splice together fossil-coral oxygen isotopic records from Palmyra Island in the tropical Pacific Ocean to provide 30-150-year windows of tropical Pacific climate variability within the last 1,100 years. The records indicate mean climate conditions in the central tropical Pacific ranging from relatively cool and dry during the tenth century to increasingly warmer and wetter climate in the twentieth century. But the corals also document a broad range of ENSO behaviour that correlates poorly with these estimates of mean climate. The most intense ENSO activity within the reconstruction occurred during the mid-seventeenth century. Taken together, the coral data imply that the majority of ENSO variability over the last millennium may have arisen from dynamics internal to the ENSO system itself.


Subject(s)
Anthozoa/metabolism , Fossils , Tropical Climate , Geography , Oxygen Isotopes , Pacific Ocean , Rain , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...