Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Appl Physiol (1985) ; 136(2): 337-348, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38126087

ABSTRACT

Essential tremor (ET) affects millions of people. Although frontline treatment options (medication, deep brain stimulation, and focused ultrasound ablation) have provided significant relief, many patients are unsatisfied with the outcomes. Peripheral suppression techniques, such as injections of botulinum toxin or sensory electrical stimulation of muscles, are gaining popularity, but could be optimized if the muscles most responsible for a patient's tremor were identified. The purpose of this study was to quantify the relationship between the activity in various upper limb muscles and the resulting tremor in patients with ET. Surface electromyogram (sEMG) from the 15 major superficial muscles of the upper limb and displacement of the hand and upper limb joints were recorded from 22 persons with ET while they performed kinetic and postural tasks representative of activities of daily living. We calculated the peak coherence (frequency-dependent correlation) in the tremor band (4-8 Hz) between the sEMG of each muscle and the displacement in each major degree of freedom (DOF). Averaged across subjects with ET, the highest coherence was found between elbow flexors (particularly biceps brachii and brachioradialis) and the distal DOF (forearm, wrist, and hand motion), and between wrist extensors (extensor carpi radialis and ulnaris) and the same distal DOF. These coherence values represent the upper bound on the proportion of the tremor caused by each muscle. We conclude that, without further information, elbow flexors and wrist extensors should be among the first muscles considered for peripheral suppression techniques in persons with ET.NEW & NOTEWORTHY We characterized the relationships between activity in upper limb muscles and tremor in persons with essential tremor using coherence, which provides an upper bound on the proportion of the tremor due to each muscle. Averaged across subjects and various tasks, tremor in the hand and distal joints was most coherent with elbow flexors and wrist extensors. We conclude that, without further information, these muscle groups should be among the first considered for peripheral suppression techniques.


Subject(s)
Essential Tremor , Wrist , Humans , Wrist/physiology , Tremor/therapy , Essential Tremor/therapy , Elbow , Activities of Daily Living , Upper Extremity , Muscle, Skeletal/physiology , Electromyography
2.
J Biomech ; 159: 111791, 2023 10.
Article in English | MEDLINE | ID: mdl-37734183

ABSTRACT

Quantifying motion in the midfoot during gait and other movements is important for a variety of applications, but challenging due to the complexity of the multiple small articulations involved. The most common motion capture based techniques are limited in their ability to characterize the non-planar nature of the midfoot joint axes. In this study we developed a novel Signed Helical Angle (SHA) to quantify midfoot angular displacement. Motion capture data from 40 healthy subjects walking at a controlled speed were used to calculate finite helical axes and angles from a two-segment foot model. Axes were classified as either pronation or supination based on their orientation, and given a sign, thus either adding to or subtracting from the angular displacement. Analysis focused on insights from axis orientation and comparisons to other techniques. Results showed that when transitions were excluded, pronation and supination axes were fairly well clustered in the transverse plane. The resulting SHA midfoot angle waveform was comparable to sagittal plane Euler and helical component waveforms, but with 39% (approximately 3°) greater range of motion in pronation and 25% (approximately 4°) greater in supination, due to the direct measurement of the motion path and the influence of the other planes. The proposed SHA method may provide an intuitive and useful method to analyze midfoot motion for a variety of applications, particularly when interventions cause subtle changes that may be diluted in planar analyses.


Subject(s)
Foot , Gait , Humans , Biomechanical Phenomena , Walking , Motion , Range of Motion, Articular
3.
Article in English | MEDLINE | ID: mdl-37663530

ABSTRACT

Background: Electrical stimulation of muscles below motoneuron threshold has shown potential as a low-cost and minimally invasive treatment for Essential Tremor (ET). Prior studies have stimulated wrist flexor and extensor muscles synchronously with diverging results, calling for further investigation. Also, prior studies have only used a narrow range of stimulation parameters, so stimulation parameters have not been optimized. Our purpose was to further investigate synchronous submotor stimulation and identify the effect of stimulation frequency on tremor suppression. Methods: We quantified the effect of brief, synchronous stimulation at 15 different frequencies from 10-150 Hz applied over wrist flexors and extensors on both tremor power and frequency in 20 ET patients. We compared tremor power and frequency from hand acceleration and sEMG between pre-, per-, and post-stimulation phases. Results: Our stimulation paradigm did not result in significant tremor suppression or tremor frequency changes at any tested stimulation frequency, showing no significant interaction between phase and stimulation frequency for tremor power measured by either hand acceleration (p = 0.69) or sEMG (p = 0.07). Additionally, the effect of phase interacting with stimulation frequency on tremor frequency was statistically insignificant for acceleration (p = 0.64) and sEMG (p = 0.37). Discussion: We conclude that brief synchronous submotor-threshold stimulation does not reduce tremor in ET patients, independent of stimulation frequency (from 10 to 150 Hz). Our results are consistent with the hypothesis that brief submotor-threshold stimulation suppresses tremor via reciprocal inhibition, which requires asynchronous stimulation. In contrast, it is hypothesized that synchronous stimulation might require longer stimulation durations to affect supraspinal tremor networks. Highlights: We studied the effects of synchronous submotor electrical stimulation over wrist flexor and extensor muscles on Essential Tremor. Our results indicate that suppressing tremor with brief synchronous stimulation is ineffective. Based on recently hypothesized mechanisms of peripheral tremor suppression, we hypothesize that asynchronous stimulation or long-duration synchronous stimulation are more effective approaches to peripheral tremor suppression.


Subject(s)
Essential Tremor , Wrist , Humans , Essential Tremor/therapy , Tremor , Muscle, Skeletal , Electric Stimulation
4.
Biomed Phys Eng Express ; 9(3)2023 03 10.
Article in English | MEDLINE | ID: mdl-36623293

ABSTRACT

Although upper-limb movement impairments are common, the primary tools for assessing and tracking impairments in clinical settings are limited. Markerless motion capture (MMC) technology has the potential to provide a large amount of quantitative, objective movement data in routine clinical use. Many past studies have focused on whether MMC are sufficiently accurate. However, another necessary step is to create meaningful clinical tests that can be administered via MMC in a robust manner. Four conventional upper-limb motor tests common in clinical assessments (visually guided movement, finger tapping, postural tremor, and reaction time) were modified so they can be administered via a particular MMC sensor, the Leap Motion Controller (LMC). In this proof-of-concept study, we administered these modified tests to 100 healthy subjects and present here the successes and challenges we encountered. Subjects generally found the LMC and the graphical user interfaces of the tests easy to use. The LMC recorded movement with sufficiently high sampling rate (>106 samples/s), and the rate of LMC malfunctions (mainly jumps in time or space) was low, so only 1.9% of data was discarded. However, administration of the tests also revealed some significant weaknesses. The visually guided movement test was easily implemented with the LMC; the modified reaction time test worked reasonably well with the LMC but is likely more easily implemented with other existing technologies; and the modified tremor and finger tapping tests did not work well because of the limited bandwidth of the LMC. Our findings highlight the need to develop and evaluate motor tests specifically suited for MMC. The real strength of MMC may not be in replicating conventional tests but rather in administering new tests or testing conditions not possible with conventional clinical tests or other technologies.


Subject(s)
Tremor , Upper Extremity , Humans , Feasibility Studies , Motion , Movement
5.
J Neurophysiol ; 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36695518

ABSTRACT

Although Essential Tremor is one of the most common movement disorders, current treatment options are relatively limited. Peripheral tremor suppression methods have shown potential, but we do not currently know which muscles are most responsible for patients' tremor, making it difficult to optimize suppression methods. The purpose of this study was to quantify the relationships between the tremorogenic activity in muscles throughout the upper limb. Muscle activity was recorded from the 15 major superficial upper-limb muscles in 24 subjects with Essential Tremor while they held various postures or made upper-limb movements. We calculated the coherence in the tremor band (4-12 Hz) between the activity of all muscle pairs and the time-varying phase difference between sufficiently coherent muscle pairs. Overall, the observed pattern somewhat mirrored functional relationships: agonistic muscle pairs were most coherent and in phase, whereas antagonist and unrelated muscle pairs exhibited less coherence and were either consistently in phase, consistently antiphase, consistently out of phase (unrelated pairs only), or else inconsistent. Patients exhibited significantly more coherence than control subjects (p<0.001) in the vast majority of muscle pairs (95 out of 105). Furthermore, differences between patients and controls were most pronounced among agonists; thus, the coherence pattern existing in control subjects was accentuated in patients with ET. We conclude that tremor-band activity is broadly distributed among the muscles of the upper limb, challenging efforts to determine which muscles are most responsible for a patient's tremor.

6.
J Hand Ther ; 36(3): 580-592, 2023.
Article in English | MEDLINE | ID: mdl-36127238

ABSTRACT

BACKGROUND: During activities of daily living, the main degrees of freedom of the forearm and wrist-forearm pronation-supination (PS), wrist flexion-extension (FE), and wrist radial-ulnar deviation (RUD)-combine seamlessly to allow the hand to engage with and manipulate objects in our environment. Yet the combined behavior of these three degrees of freedom is relatively unknown. PURPOSE: To provide a characterization of natural forearm and wrist kinematics (joint configuration, movement direction, and speed) during activities of daily living. STUDY DESIGN: This is a descriptive cross-sectional study. METHODS: Ten healthy subjects performed 24 activities of daily living chosen to represent a wide variety of activities, while we measured their PS, FE, and RUD angles using electromagnetic motion capture. The orientation of the forearm and wrist was represented in the three-dimensional "configuration space" spanned by PS, FE, and RUD. From the time course of forearm and wrist orientation in configuration space, we extracted three-dimensional distributions of joint configuration, movement direction, and speed. RESULTS: Most joint configurations were focused in a relatively small area: subjects spent roughly 50% of the time in the central 20% of their functional range of motion. Some movement directions were significantly more common than others (p < 0.001); in particular, the direction of the dart-thrower's motion (DTM) was about three times more common than motion perpendicular to it. Most movements were slow: the likelihood of moving at increasing speeds dropped off exponentially. Interestingly, the most common high-speed motion combined the DTM with a twist from pronation to supination. As this motion allows one to pick up an object in front of one's body and bring it to the head, it is essential for self-care. Thus, although many activities of daily living follow the DTM without significant forearm rotation, the greatest importance of the DTM may lie in its combination with forearm rotation. CONCLUSIONS: Despite the wide variety of activities, we found evidence of preferred movement behavior, and this behavior showed significant coupling between the wrist and forearm.

7.
Clin Neurophysiol ; 142: 20-32, 2022 10.
Article in English | MEDLINE | ID: mdl-35930890

ABSTRACT

OBJECTIVE: Peripheral tremor suppression has the potential to reduce tremor, but we do not currently know where best to intervene. The purpose of this study was to characterize the distribution of tremorogenic activity among upper-limb muscles. METHODS: Surface electromyography was recorded from the 15 major superficial muscles of the upper limb while 25 patients with Essential Tremor performed postural and kinetic tasks. We defined tremorogenic activity as power in the tremor band (4-8 Hz) and determined the distribution of this power among muscles. RESULTS: The distribution varied considerably between patients (mean r = 0.58), but on average, the greatest power was found in the anterior deltoid and extensor carpi ulnaris muscles. Other muscles with high power included the extensor carpi radialis, pectoralis major, lateral deltoid, and brachialis muscles. This distribution was similar (mean r ≥ 0.88) for postural and kinetic tremor, various limb configurations, repetitions, and patient characteristics (sex, tremor severity, age of onset, and duration). CONCLUSIONS: We identified a rough pattern in which muscles opposing gravity appeared to have the highest tremor-band power; we hypothesize that the distribution of tremorogenic muscle activity depends in part on the distribution of voluntary activity required by the task. SIGNIFICANCE: Understanding which muscles exhibit the most tremorogenic activity is one of the steps in the pursuit of optimizing peripheral tremor suppression.


Subject(s)
Essential Tremor , Electromyography , Essential Tremor/diagnosis , Humans , Muscle, Skeletal/physiology , Tremor/diagnosis , Upper Extremity/physiology
8.
Article in English | MEDLINE | ID: mdl-35271447

ABSTRACT

Transcutaneous electrical stimulation has been applied in tremor suppression applications. Out-of-phase stimulation strategies applied above or below motor threshold result in a significant attenuation of pathological tremor. For stimulation to be properly timed, the varying phase relationship between agonist-antagonist muscle activity during tremor needs to be accurately estimated in real-time. Here we propose an online tremor phase and frequency tracking technique for the customized control of electrical stimulation, based on a phase-locked loop (PLL) system applied to the estimated neural drive to muscles. Surface electromyography signals were recorded from the wrist extensor and flexor muscle groups of 13 essential tremor patients during postural tremor. The EMG signals were pre-processed and decomposed online and offline via the convolution kernel compensation algorithm to discriminate motor unit spike trains. The summation of motor unit spike trains detected for each muscle was bandpass filtered between 3 to 10 Hz to isolate the tremor related components of the neural drive to muscles. The estimated tremorogenic neural drive was used as input to a PLL that tracked the phase differences between the two muscle groups. The online estimated phase difference was compared with the phase calculated offline using a Hilbert Transform as a ground truth. The results showed a rate of agreement of 0.88 ± 0.22 between offline and online EMG decomposition. The PLL tracked the phase difference of tremor signals in real-time with an average correlation of 0.86 ± 0.16 with the ground truth (average error of 6.40° ± 3.49°). Finally, the online decomposition and phase estimation components were integrated with an electrical stimulator and applied in closed-loop on one patient, to representatively demonstrate the working principle of the full tremor suppression system. The results of this study support the feasibility of real-time estimation of the phase of tremorogenic neural drive to muscles, providing a methodology for future tremor-suppression neuroprostheses.


Subject(s)
Essential Tremor , Electromyography/methods , Humans , Muscle, Skeletal , Tremor , Wrist
9.
J Biomech Eng ; 144(7)2022 07 01.
Article in English | MEDLINE | ID: mdl-34951462

ABSTRACT

Most motion capture measurements suffer from soft-tissue artifacts (STA). Especially affected are rotations about the long axis of a limb segment, such as humeral internal-external rotation (HIER) and forearm pronation-supination (FPS). Unfortunately, most existing methods to compensate for STA were designed for optoelectronic motion capture systems. We present and evaluate an STA compensation method that (1) compensates for STA in HIER and/or FPS, (2) is developed specifically for electromagnetic motion capture systems, and (3) does not require additional calibration or data. To compensate for STA, calculation of HIER angles relies on forearm orientation, and calculation of FPS angles rely on hand orientation. To test this approach, we recorded whole-arm movement data from eight subjects and compared their joint angle trajectories calculated according to progressive levels of STA compensation. Compensated HIER and FPS angles were significantly larger than uncompensated angles. Although the effect of STA compensation on other joint angles (besides HIER and FPS) was usually modest, significant effects were seen in certain degrees-of-freedom under some conditions. Overall, the method functioned as intended during most of the range of motion of the upper limb, but it becomes unstable in extreme elbow extension and extreme wrist flexion-extension. Specifically, this method is not recommended for movements within 20 deg of full elbow extension, full wrist flexion, or full wrist extension. Since this method does not require additional calibration of data, it can be applied retroactively to data collected without the intent to compensate for STA.


Subject(s)
Artifacts , Upper Extremity , Biomechanical Phenomena , Electromagnetic Phenomena , Humans , Movement , Pronation , Range of Motion, Articular , Supination
10.
Clin Neurophysiol ; 131(11): 2700-2712, 2020 11.
Article in English | MEDLINE | ID: mdl-33010725

ABSTRACT

OBJECTIVE: Although Essential Tremor is one of the most common movement disorders, we do not currently know which muscles are most responsible for tremor. Determining this requires multiple steps, one of which is characterizing the distribution of tremor among the degrees of freedom (DOF) of the upper limb. METHODS: Upper-limb motion was recorded while 22 subjects with ET performed postural and kinetic tasks involving a variety of limb configurations. We calculated the mean distribution of tremor among the seven DOF from the shoulder to the wrist, as well as the effect of limb configuration, repetition, and subject characteristics (sex, tremor onset, duration, and severity) on the distribution. RESULTS: On average, kinetic tremor was greatest in forearm pronation-supination and wrist flexion-extension, intermediate in shoulder internal-external rotation and wrist radial-ulnar deviation and then shoulder flexion-extension and elbow flexion-extension, and least in shoulder abduction-adduction. The average distribution of postural tremor was similar except for forearm pronation-supination, which played a smaller role than in kinetic tremor. Limb configuration and subject characteristics did significantly affect tremor, but practically only in forearm pronation-supination and wrist flexion-extension. There were no significant differences between repetitions, indicating that the distribution was consistent over the duration of the experiment. CONCLUSIONS: This paper presents a thorough characterization of tremor distribution from the shoulder to the wrist. SIGNIFICANCE: Understanding which DOF exhibit the most tremor may lead to more targeted peripheral tremor suppression.


Subject(s)
Essential Tremor/physiopathology , Movement/physiology , Posture/physiology , Tremor/physiopathology , Upper Extremity/physiopathology , Aged , Aged, 80 and over , Biomechanical Phenomena/physiology , Female , Humans , Male , Middle Aged , Pronation/physiology , Range of Motion, Articular/physiology , Supination/physiology , Young Adult
11.
J Biomech Eng ; 142(7)2020 07 01.
Article in English | MEDLINE | ID: mdl-31891379

ABSTRACT

Electromagnetic (EM) motion tracking systems are suitable for many research and clinical applications, including in vivo measurements of whole-arm movements. Unfortunately, the methodology for in vivo measurements of whole-arm movements using EM sensors is not well described in the literature, making it difficult to perform new measurements and all but impossible to make meaningful comparisons between studies. The recommendations of the International Society of Biomechanics (ISB) have provided a great service, but by necessity they do not provide clear guidance or standardization on all required steps. The goal of this paper was to provide a comprehensive methodology for using EM sensors to measure whole-arm movements in vivo. We selected methodological details from past studies that were compatible with the ISB recommendations and suitable for measuring whole-arm movements using EM sensors, filling in gaps with recommendations from our own past experiments. The presented methodology includes recommendations for defining coordinate systems (CSs) and joint angles, placing sensors, performing sensor-to-body calibration, calculating rotation matrices from sensor data, and extracting unique joint angles from rotation matrices. We present this process, including all equations, for both the right and left upper limbs, models with nine or seven degrees-of-freedom (DOF), and two different calibration methods. Providing a detailed methodology for the entire process in one location promotes replicability of studies by allowing researchers to clearly define their experimental methods. It is hoped that this paper will simplify new investigations of whole-arm movement using EM sensors and facilitate comparison between studies.


Subject(s)
Biomechanical Phenomena , Electromagnetic Phenomena , Computer Simulation , Movement , Range of Motion, Articular
12.
J Neurophysiol ; 122(5): 2043-2053, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31509467

ABSTRACT

Pathological tremor is an oscillation of body parts at 3-10 Hz, determined by the output of spinal motor neurons (MNs), which receive synaptic inputs from supraspinal centers and muscle afferents. The behavior of spinal MNs during tremor is not well understood, especially in relation to the activation of the multiple muscles involved. Recent studies on patients with essential tremor have shown that antagonist MN pools receive shared input at the tremor frequency. In this study, we investigated the synaptic inputs related to tremor and voluntary movement, and their coordination across antagonist muscles. We analyzed the spike trains of motor units (MUs) identified from high-density surface electromyography from the forearm extensor and flexor muscles in 15 patients with essential tremor during postural tremor. The shared synaptic input was quantified by coherence and phase difference analysis of the spike trains. All pairs of spike trains in each muscle showed coherence peaks at the voluntary drive frequency (1-3 Hz, 0.2 ± 0.2, mean ± SD) and tremor frequency (3-10 Hz, 0.6 ± 0.3) and were synchronized with small phase differences (3.3 ± 25.2° and 3.9 ± 22.0° for the voluntary drive and tremor frequencies, respectively). The coherence between MN spike trains of antagonist muscle groups at the tremor frequency was significantly smaller than intramuscular coherence. We predominantly observed in-phase activation of MUs between agonist/antagonist muscles at the voluntary frequency band (0.6 ± 48.8°) and out-of-phase activation at the tremor frequency band (126.9 ± 75.6°). Thus MNs innervating agonist/antagonist muscles concurrently receive synaptic inputs with different phase shifts in the voluntary and tremor frequency bands.NEW & NOTEWORTHY Although the mechanical characteristics of tremor have been widely studied, the activation of the affected muscles is still poorly understood. We analyzed the behavior of motor units of pairs of antagonistic wrist muscle groups in patients with essential tremor and studied their activity at voluntary movement- and tremor-related frequencies. We found that the phase relation between inputs to antagonistic muscles is different at the voluntary and tremor frequency bands.


Subject(s)
Essential Tremor/physiopathology , Motor Activity/physiology , Motor Neurons/physiology , Muscle, Skeletal/physiopathology , Aged , Electromyography , Female , Humans , Male , Middle Aged
13.
J Biomech Eng ; 141(8)2019 Aug 01.
Article in English | MEDLINE | ID: mdl-30964940

ABSTRACT

Although tremor is the most common movement disorder, there are few noninvasive treatment options. Creating effective tremor suppression devices requires a knowledge of where tremor originates mechanically (which muscles) and how it propagates through the limb (to which degrees-of-freedom (DOF)). To simulate tremor propagation, we created a simple model of the upper limb, with tremorogenic activity in the 15 major superficial muscles as inputs and tremulous joint displacement in the seven major DOF as outputs. The model approximated the muscle excitation-contraction dynamics, musculoskeletal geometry, and mechanical impedance of the limb. From our simulations, we determined fundamental principles for tremor propagation: (1) The distribution of tremor depends strongly on musculoskeletal dynamics. (2) The spreading of tremor is due to inertial coupling (primarily) and musculoskeletal geometry (secondarily). (3) Tremorogenic activity in a given muscle causes significant tremor in only a small subset of DOF, though these affected DOF may be distant from the muscle. (4) Assuming uniform distribution of tremorogenic activity among muscles, tremor increases proximal-distally, and the contribution from muscles increases proximal-distally. (5) Although adding inertia (e.g., with weighted utensils) is often used to suppress tremor, it is possible to increase tremor by adding inertia to the wrong DOF. (6) Similarly, adding viscoelasticity to the wrong DOF can increase tremor. Based solely on the musculoskeletal system, these principles indicate that tremor treatments targeting muscles should focus first on the distal muscles, and devices targeting DOF should focus first on the distal DOF.

14.
Med Eng Phys ; 63: 72-78, 2019 01.
Article in English | MEDLINE | ID: mdl-30503366

ABSTRACT

Although tremor is one of the most common movement disorders, it is evaluated using relatively coarse clinical scales. We propose to measure tremor in clinical settings using the Leap Motion Controller (LMC), which is a markerless motion capture sensor that has a low cost, zero set-up time, and dynamic accuracy of 1.2 mm. However, the frequency response of the LMC has not been characterized, so its ability to track oscillations such as tremor is unknown. To characterize the frequency response of the LMC, we measured the position of a mannequin hand simultaneously with the LMC and a high-resolution encoder while the mannequin hand oscillated at various combinations of frequency (1-15 Hz) and amplitudes (0.01-30 mm). We calculated the magnitude ratio and phase shift of the LMC and found the bandwidth of the LMC to range from 0-3 Hz to 0-5 Hz for tremor amplitudes greater than the dynamic accuracy. This bandwidth is too small to accurately measure most tremors. However, we developed an inverse filter to estimate the actual tremor amplitude and phase despite the limited bandwidth. Over the combinations of frequency and amplitude mentioned above, the inverse filter estimated the actual tremor amplitude and phase with errors of 3% and 2%, respectively.


Subject(s)
Movement , Tremor/diagnosis , Tremor/physiopathology , Biomechanical Phenomena
15.
J Neurophysiol ; 120(4): 2138-2154, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29947599

ABSTRACT

The musculoskeletal system can move in more ways than are strictly necessary, allowing many tasks to be accomplished with a variety of limb configurations. Why some configurations are preferred has been a focus of motor control research, but most studies have focused on shoulder-elbow or whole arm movements. This study focuses on movements involving forearm pronation-supination (PS), wrist flexion-extension (FE), and wrist radial-ulnar deviation (RUD) and elucidates how these three degrees of freedom (DOF) combine to perform the common task of pointing, which only requires two DOF. Although pointing is more sensitive to FE and RUD than to PS and could be easily accomplished with FE and RUD alone, subjects tend to involve a small amount of PS. However, why we choose this behavior has been unknown and is the focus of this paper. With the use of a second-order model with lumped parameters, we tested a number of plausible control strategies involving minimization of work, potential energy, torque, and path length. None of these control schemes robustly predicted the observed behavior. However, an alternative control scheme, hypothesized to control the DOF that were most important to the task (FE and RUD) and ignore the less important DOF (PS), matched the observed behavior well. In particular, the behavior observed in PS appears to be a mechanical side effect caused by unopposed interaction torques. We conclude that moderately sized pointing movements involving the wrist and forearm are controlled by ignoring forearm rotation even though this strategy does not robustly minimize work, potential energy, torque, or path length. NEW & NOTEWORTHY Many activities require us to point our hands in a given direction using wrist and forearm rotations. Although there are infinitely many ways to do this, we tend to follow a stereotyped pattern. Why we choose this pattern has been unknown and is the focus of this paper. After testing a variety of hypotheses, we conclude that the pattern results from a simplifying strategy in which we focus on wrist rotations and ignore forearm rotation.


Subject(s)
Forearm/physiology , Pronation , Wrist/physiology , Adult , Biomechanical Phenomena , Female , Humans , Male , Supination
16.
Clin Biomech (Bristol, Avon) ; 52: 117-123, 2018 02.
Article in English | MEDLINE | ID: mdl-29428341

ABSTRACT

BACKGROUND: Despite the pervasive and devastating effect of Essential Tremor (ET), the distribution of ET throughout the upper limb is unknown. We developed a method for characterizing the distribution of ET and performed a preliminary characterization in a small number of subjects with ET. METHODS: Using orientation sensors and inverse kinematics, we measured tremor in each of the seven major degrees of freedom (DOF) from the shoulder to the wrist while ten patients with mild ET assumed 16 different postures. We described the tremor in each DOF in terms of power spectral density measures and investigated how tremor varied between DOF, postures, gravitational torques, and repetitions. FINDINGS: Our method successfully resulted in tremor measures in each DOF, allowing one to compare tremor between DOF and determine the distribution of tremor throughout the upper limb, including how the distribution changes with posture. In our small number of subjects, we found that the amount of power in the frequency band associated with ET (4-12Hz) was lowest in the shoulder and greatest in the wrist. Similarly, the existence and amplitude of peaks in this band increased from proximal to distal. Although the amount of tremor differed significantly between postures, we did not find any clear patterns with changes in posture or gravitational torque. INTERPRETATION: This method can be used to characterize the distribution of tremor throughout the upper limb. Our preliminary characterization suggests that the amount of tremor increases in a proximal-distal manner.


Subject(s)
Essential Tremor/diagnosis , Essential Tremor/physiopathology , Shoulder/physiopathology , Wrist Joint/physiopathology , Accelerometry , Adult , Aged , Aged, 80 and over , Biomechanical Phenomena , Calibration , Female , Humans , Male , Middle Aged , Posture , Tremor , Upper Extremity , Wrist
17.
IEEE Int Conf Rehabil Robot ; 2017: 175-180, 2017 07.
Article in English | MEDLINE | ID: mdl-28813814

ABSTRACT

Tremor is the most common movement deficit and manifests in a variety of disorders, including Essential Tremor, Parkinson's Disease, Dystonia, and Cerebellar Ataxia. Although medication and surgical interventions have significantly reduced patient suffering, they are only partially effective and can carry undesired side effects, leaving many patients without satisfactory treatment options. Wearable tremor-suppressing devices could provide an alternative to medication and surgery. Multiple research groups have developed orthotic prototypes to low-pass filter tremor, but these devices have not yet been optimized for in-vivo use. Optimizing non-invasive tremor suppression requires an understanding of where the tremor originates mechanically (which muscles) and how it propagates to the hand (where it matters most). Here we present on the beginnings of our multi-pronged work to determine the origin, propagation, and distribution of Essential Tremor, and we provide preliminary results.


Subject(s)
Essential Tremor/diagnosis , Essential Tremor/physiopathology , Signal Processing, Computer-Assisted , Wearable Electronic Devices , Equipment Design , Essential Tremor/prevention & control , Humans , Models, Theoretical , Shoulder/physiology , Wrist/physiology
18.
J Neurophysiol ; 118(1): 69-83, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28356477

ABSTRACT

Mounting evidence suggests that human motor control uses dynamic primitives, attractors of dynamic neuromechanical systems that require minimal central supervision. However, advantages for control may be offset by compromised versatility. Extending recent results showing that humans could not sustain discrete movements as duration decreased, this study tested whether smoothly rhythmic movements could be maintained as duration increased. Participants performed horizontal movements between two targets, paced by sounds with intervals that increased from 1 to 6 s by 200 ms per cycle and then decreased again. The instruction emphasized smooth rhythmic movements without interspersed dwell times. We hypothesized that 1) when oscillatory motions slow down, smoothness decreases; 2) slower oscillatory motions are executed as submovements or even discrete movements; and 3) the transition between smooth oscillations and submovements shows hysteresis. An alternative hypothesis was that 4) removing visual feedback restores smoothness, indicative of visually evoked corrections causing the irregularity. Results showed that humans could not perform slow and smooth oscillatory movements. Harmonicity decreased with longer intervals, and dwell times between cycles appeared and became prominent at slower speeds. Velocity profiles showed an increase with cycle duration of the number of overlapping submovements. There was weak evidence of hysteresis in the transition between these two types of movement. Eliminating vision had no effect, suggesting that intermittent visually evoked corrections did not underlie this phenomenon. These results show that it is hard for humans to execute smooth rhythmic motions very slowly. Instead, they "default" to another dynamic primitive and compose motion as a sequence of overlapping submovements.NEW & NOTEWORTHY Complementing a large body of prior work showing advantages of composing primitives to manage the complexity of motor control, this paper uncovers a limitation due to composition of behavior from dynamic primitives: while slower execution frequently makes a task easier, there is a limit and it is hard for humans to move very slowly. We suggest that this remarkable limitation is not due to inadequacies of muscle, nor to slow neural communication, but is a consequence of how the control of movement is organized.


Subject(s)
Movement , Psychomotor Performance , Reaction Time , Acceleration , Adult , Female , Hand/physiology , Humans , Male , Periodicity
19.
J Neurophysiol ; 117(3): 1239-1257, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28003410

ABSTRACT

Smoothness is a hallmark of healthy movement. Past research indicates that smoothness may be a side product of a control strategy that minimizes error. However, this is not the only reason for smooth movements. Our musculoskeletal system itself contributes to movement smoothness: the mechanical impedance (inertia, damping, and stiffness) of our limbs and joints resists sudden change, resulting in a natural smoothing effect. How the biomechanics and neural control interact to result in an observed level of smoothness is not clear. The purpose of this study is to 1) characterize the smoothness of wrist rotations, 2) compare it with the smoothness of planar shoulder-elbow (reaching) movements, and 3) determine the cause of observed differences in smoothness. Ten healthy subjects performed wrist and reaching movements involving different targets, directions, and speeds. We found wrist movements to be significantly less smooth than reaching movements and to vary in smoothness with movement direction. To identify the causes underlying these observations, we tested a number of hypotheses involving differences in bandwidth, signal-dependent noise, speed, impedance anisotropy, and movement duration. Our simulations revealed that proximal-distal differences in smoothness reflect proximal-distal differences in biomechanics: the greater impedance of the shoulder-elbow filters neural noise more than the wrist. In contrast, differences in signal-dependent noise and speed were not sufficiently large to recreate the observed differences in smoothness. We also found that the variation in wrist movement smoothness with direction appear to be caused by, or at least correlated with, differences in movement duration, not impedance anisotropy.NEW & NOTEWORTHY This article presents the first thorough characterization of the smoothness of wrist rotations (flexion-extension and radial-ulnar deviation) and comparison with the smoothness of reaching (shoulder-elbow) movements. We found wrist rotations to be significantly less smooth than reaching movements and determined that this difference reflects proximal-distal differences in biomechanics: the greater impedance (inertia, damping, stiffness) of the shoulder-elbow filters noise in the command signal more than the impedance of the wrist.


Subject(s)
Movement/physiology , Range of Motion, Articular/physiology , Rotation , Adolescent , Adult , Analysis of Variance , Arm/physiology , Biomechanical Phenomena/physiology , Computer Simulation , Feedback, Sensory , Female , Humans , Joints/innervation , Male , Models, Biological , Nonlinear Dynamics , Torque , Wrist/innervation , Young Adult
20.
Ann Biomed Eng ; 45(4): 1133-1147, 2017 04.
Article in English | MEDLINE | ID: mdl-27957608

ABSTRACT

Although tremor is the most common movement disorder, there exist few effective tremor-suppressing devices, in part because the characteristics of tremor throughout the upper limb are unknown. To clarify, optimally suppressing tremor requires a knowledge of the mechanical origin, propagation, and distribution of tremor throughout the upper limb. Here we present the first systematic investigation of how tremor propagates between the shoulder, elbow, forearm, and wrist. We simulated tremor propagation using a linear, time-invariant, lumped-parameter model relating joint torques and the resulting joint displacements. The model focused on the seven main degrees of freedom from the shoulder to the wrist and included coupled joint inertia, damping, and stiffness. We deliberately implemented a simple model to focus first on the most basic effects. Simulating tremorogenic joint torque as a sinusoidal input, we used the model to establish fundamental principles describing how input parameters (torque location and frequency) and joint impedance (inertia, damping, and stiffness) affect tremor propagation. We expect that the methods and principles presented here will serve as the groundwork for future refining studies to understand the origin, propagation, and distribution of tremor throughout the upper limb in order to enable the future development of optimal tremor-suppressing devices.


Subject(s)
Models, Neurological , Tremor/physiopathology , Upper Extremity/physiopathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...