Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Bone Miner Res ; 33(5): 875-887, 2018 05.
Article in English | MEDLINE | ID: mdl-29329488

ABSTRACT

The X-linked WTX/AMER1 protein constitutes an important component of the ß-catenin destruction complex that can both enhance and suppress canonical ß-catenin signaling. Somatic mutations in WTX/AMER1 have been found in a proportion of the pediatric kidney cancer Wilms' tumor. By contrast, germline mutations cause the severe sclerosing bone dysplasia osteopathia striata congenita with cranial sclerosis (OSCS), a condition usually associated with fetal or perinatal lethality in male patients. Here we address the developmental and molecular function of WTX by generating two novel mouse alleles. We show that in addition to the previously reported skeletal abnormalities, loss of Wtx causes severe midline fusion defects including cleft palate and ectopic synostosis at the base of the skull. By contrast, deletion of the C-terminal part of the protein results in only mild developmental abnormalities permitting survival beyond birth. Adult analysis, however, revealed skeletal defects including changed skull morphology and an increased whole-body bone density, resembling a subgroup of male patients carrying a milder, survivable phenotype. Molecular analysis in vitro showed that while ß-catenin fails to co-immunoprecipitate with the truncated protein, partial recruitment appears to be achieved in an indirect manner using AXIN/AXIN2 as a molecular bridge. Taken together our analysis provides a novel model for WTX-caused bone diseases and explains on the molecular level how truncation mutations in this gene may retain some of WTX-protein functions. © 2018 American Society for Bone and Mineral Research.


Subject(s)
Alleles , Bone Density/genetics , Mutation , Osteosclerosis , Skull , Tumor Suppressor Proteins , Animals , Disease Models, Animal , Mice , Mice, Mutant Strains , Osteosclerosis/genetics , Osteosclerosis/metabolism , Osteosclerosis/pathology , Skull/metabolism , Skull/pathology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
2.
Genesis ; 55(11)2017 11.
Article in English | MEDLINE | ID: mdl-28960679

ABSTRACT

WTX/AMER1 is an important developmental regulator, mutations in which have been identified in a proportion of patients suffering from the renal neoplasm Wilms' tumor and in the bone malformation syndrome Osteopathia Striata with Cranial Sclerosis (OSCS). Its cellular functions appear complex and the protein can be found at the membrane, within the cytoplasm and the nucleus. To understand its developmental and cellular function an allelic series for Wtx in the mouse is crucial. Whereas mice carrying a conditional knock out allele for Wtx have been previously reported, a gain-of-function mouse model that would allow studying the molecular, cellular and developmental role of Wtx is still missing. Here we describe the generation of a novel mouse strain that permits the conditional activation of WTX expression. Wtx fused to GFP was introduced downstream a stop cassette flanked by loxP sites into the Rosa26 locus by gene targeting. Ectopic WTX expression is reported after crosses with several Cre transgenic mice in different embryonic tissues. Further, functionality of the fusion protein was demonstrated in the context of a Wtx null allele.


Subject(s)
Gene Knock-In Techniques/methods , Tumor Suppressor Proteins/genetics , Animals , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Mice , Tumor Suppressor Proteins/metabolism
3.
Cell Rep ; 13(9): 1757-64, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26655896

ABSTRACT

Liver zonation, the spatial separation of different metabolic pathways along the liver sinusoids, is fundamental for proper functioning of this organ, and its disruption can lead to the development of metabolic disorders such as hyperammonemia. Metabolic zonation involves the induction of ß-catenin signaling around the central veins, but how this patterned activity is established and maintained is unclear. Here, we show that the signaling molecule Rspondin3 is specifically expressed within the endothelial compartment of the central vein. Conditional deletion of Rspo3 in mice disrupts activation of central fate, demonstrating its crucial role in determining and maintaining ß-catenin-dependent zonation. Moreover, ectopic expression of Rspo1, a close family member of Rspo3, induces the expression of pericentral markers, demonstrating Rspondins to be sufficient to imprint a more central fate. Thus, Rspo3 is a key angiocrine factor that controls metabolic zonation of liver hepatocytes.


Subject(s)
Thrombospondins/metabolism , Animals , Axin Protein/genetics , Axin Protein/metabolism , Cell Line , Down-Regulation/drug effects , Endothelial Cells/cytology , Endothelial Cells/metabolism , Female , In Situ Hybridization, Fluorescence , Mice , Mice, Knockout , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Tamoxifen/pharmacology , Thrombospondins/genetics , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt Signaling Pathway/drug effects , Wnt2 Protein/genetics , Wnt2 Protein/metabolism , beta Catenin/metabolism
4.
Kidney Int ; 88(2): 321-31, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25993318

ABSTRACT

The Wilms' tumor suppressor WT1 is a key regulator of podocyte function that is mutated in Denys-Drash and Frasier syndromes. Here we have used an integrative approach employing ChIP, exon array, and genetic analyses in mice to address general and isoform-specific functions of WT1 in podocyte differentiation. Analysis of ChIP-Seq data showed that almost half of the podocyte-specific genes are direct targets of WT1. Bioinformatic analysis further identified coactivator FOXC1-binding sites in proximity to WT1-bound regions, thus supporting coordinated action of these transcription factors in regulating podocyte-specific genes. Transcriptional profiling of mice lacking the WT1 alternative splice isoform (+KTS) had a more restrictive set of genes whose expression depends on these alternatively spliced isoforms. One of these genes encodes the membrane-associated guanylate kinase MAGI2, a protein that localizes to the base of the slit diaphragm. Using functional analysis in mice, we further show that MAGI2α is essential for proper localization of nephrin and the assembly of the slit diaphragm complex. Finally, a dramatic reduction of MAGI2 was found in an LPS mouse model of glomerular injury and in genetic cases of human disease. Thus, our study highlights the central role of WT1 in podocyte differentiation, identifies that WT1 has a central role in podocyte differentiation, and identifies MAGI2α as the crucial isoform in slit diaphragm assembly, suggesting a causative role of this gene in the etiology of glomerular disorders.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Differentiation/genetics , Guanylate Kinases/genetics , Guanylate Kinases/metabolism , Podocytes/physiology , Repressor Proteins/genetics , Transcription, Genetic , Alternative Splicing , Animals , Binding Sites , Down-Regulation/drug effects , Exons , Female , Forkhead Transcription Factors/genetics , Glomerulonephritis, Membranoproliferative/metabolism , Glomerulosclerosis, Focal Segmental/metabolism , Humans , Lipopolysaccharides/pharmacology , Membrane Proteins/metabolism , Mice , Mutation , Oligonucleotide Array Sequence Analysis , Podocytes/pathology , Promoter Regions, Genetic , Protein Isoforms/genetics , Repressor Proteins/metabolism , WT1 Proteins
5.
BMC Genomics ; 12: 180, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21473775

ABSTRACT

BACKGROUND: Rainbow trout (Oncorhynchus mykiss) are the most-widely cultivated cold freshwater fish in the world and an important model species for many research areas. Coupling great interest in this species as a research model with the need for genetic improvement of aquaculture production efficiency traits justifies the continued development of genomics research resources. Many quantitative trait loci (QTL) have been identified for production and life-history traits in rainbow trout. An integrated physical and genetic map is needed to facilitate fine mapping of QTL and the selection of positional candidate genes for incorporation in marker-assisted selection (MAS) programs for improving rainbow trout aquaculture production. RESULTS: The first generation integrated map of the rainbow trout genome is composed of 238 BAC contigs anchored to chromosomes of the genetic map. It covers more than 10% of the genome across segments from all 29 chromosomes. Anchoring of 203 contigs to chromosomes of the National Center for Cool and Cold Water Aquaculture (NCCCWA) genetic map was achieved through mapping of 288 genetic markers derived from BAC end sequences (BES), screening of the BAC library with previously mapped markers and matching of SNPs with BES reads. In addition, 35 contigs were anchored to linkage groups of the INRA (French National Institute of Agricultural Research) genetic map through markers that were not informative for linkage analysis in the NCCCWA mapping panel. The ratio of physical to genetic linkage distances varied substantially among chromosomes and BAC contigs with an average of 3,033 Kb/cM. CONCLUSIONS: The integrated map described here provides a framework for a robust composite genome map for rainbow trout. This resource is needed for genomic analyses in this research model and economically important species and will facilitate comparative genome mapping with other salmonids and with model fish species. This resource will also facilitate efforts to assemble a whole-genome reference sequence for rainbow trout.


Subject(s)
Contig Mapping , Genome , Microsatellite Repeats , Oncorhynchus mykiss/genetics , Animals , Chromosomes, Artificial, Bacterial/genetics , Genetic Linkage , Genetic Markers , Genotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...