Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Reprod ; 31(1): 158-68, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26537920

ABSTRACT

STUDY QUESTION: Does repeat-associated non-AUG (RAN) translation play a role in fragile X-associated primary ovarian insufficiency (FXPOI), leading to the presence of polyglycine containing protein (FMRpolyG)-positive inclusions in ovarian tissue? SUMMARY ANSWER: Ovaries of a woman with FXPOI and of an Fmr1 premutation (PM) mouse model (exCGG-KI) contain intranuclear inclusions that stain positive for both FMRpolyG and ubiquitin. WHAT IS KNOWN ALREADY: Women who carry the FMR1 PM are at 20-fold increased risk to develop primary ovarian insufficiency (FXPOI). A toxic RNA gain-of-function has been suggested as the underlying mechanism since the PM results in increased levels of mRNA containing an expanded repeat, but reduced protein levels of fragile X mental retardation protein (FMRP). Recently, RAN translation has been shown to occur from FMR1 mRNA that contains PM repeat expansions, leading to FMRpolyG inclusions in brain and non-CNS tissues of fragile X-associated tremor/ataxia syndrome (FXTAS) patients. STUDY DESIGN, SIZE, DURATION: Ovaries of a woman with FXPOI and women without PM (controls), and ovaries from wild-type and exCGG-KI mice were analyzed by immunohistochemistry for the presence of inclusions that stained for ubiquitin and FMRpolyG . The ovaries from wild-type and exCGG-KI mice were further characterized for the number of follicles, Fmr1 mRNA levels and FMRP protein expression. The presence of inclusions was also analyzed in pituitaries of a man with FXTAS and the exCGG-KI mice. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human ovaries from a woman with FXPOI and two control subjects and pituitaries from a man with FXTAS and a control subjects were fixed in 4% formalin. Ovaries and pituitaries of wild-type and exCGG mice were fixed in Bouin's fluid or 4% paraformaldehyde. Immunohistochemistry was performed on the human and mouse samples using FMRpolyG, ubiquitin and Fmrp antibodies. Fmr1 mRNA and protein expression were determined in mouse ovaries by quantitative RT-PCR and Western blot analysis. Follicle numbers in mouse ovaries were determined in serial sections by microscopy. MAIN RESULTS AND THE ROLE OF CHANCE: FMRpolyG-positive inclusions were present in ovarian stromal cells of a woman with FXPOI but not in the ovaries of control subjects. The FMRpolyG-positive inclusions colocalized with ubiquitin-positive inclusions. Similar inclusions were also observed in the pituitary of a man with FXTAS but not in control subjects. Similarly, ovaries of 40-week-old exCGG-KI mice, but not wild-type mice, contained numerous inclusions in the stromal cells that stained for both FMRpolyG- and ubiquitin, while the ovaries of 20-week-old exCGG-KI contained fewer inclusions. At 40 weeks ovarian Fmr1 mRNA expression was increased by 5-fold in exCGG-KI mice compared with wild-type mice, while Fmrp expression was reduced by 2-fold. With respect to ovarian function in exCGG-KI mice: (i) although the number of healthy growing follicles did not differ between wild-type and exCGG-KI mice, the number of atretic large antral follicles was increased by nearly 9-fold in 40-week old exCGG-KI mice (P < 0.001); (ii) at 40 weeks of age only 50% of exCGG-KI mice had recent ovulations compared with 89% in wild-type mice (P = 0.07) and (iii) those exCGG-KI mice with recent ovulations tended to have a reduced number of fresh corpora lutea (4.8 ± 1.74 versus 8.50 ± 0.98, exCGG-KI versus wild-type mice, respectively, P = 0.07). LIMITATIONS, REASONS FOR CAUTION: Although FMRpolyG-positive inclusions were detected in ovaries of both a woman with FXPOI and a mouse model of the FMR1 PM, we only analyzed one ovary from a FXPOI subject. Caution is needed to extrapolate these results to all women with the FMR1 PM. Furthermore, the functional consequence of FMRpolyG-positive inclusions in the ovaries for reproduction remains to be determined. WIDER IMPLICATIONS OF THE FINDINGS: Our results suggest that a dysfunctional hypothalamic-pituitary-gonadal-axis may contribute to FXPOI in FMR1 PM carriers. STUDY FUNDING/COMPETING INTERESTS: This study was supported by grants from NFXF, ZonMW, the Netherlands Brain Foundation and NIH. The authors have no conflict of interest to declare.


Subject(s)
Ataxia/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Intranuclear Inclusion Bodies/genetics , Primary Ovarian Insufficiency/genetics , Tremor/genetics , Trinucleotide Repeat Expansion/genetics , Adult , Aged , Animals , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Mutation , Peptides
2.
Biochim Biophys Acta ; 1842(4): 654-64, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24440524

ABSTRACT

The splicing of the microtubule-associated protein Tau is regulated during development and is found to be deregulated in a growing number of pathological conditions such as myotonic dystrophy type I (DM1), in which a reduced number of isoforms is expressed in the adult brain. DM1 is caused by a dynamic and unstable CTG repeat expansion in the DMPK gene, resulting in an RNA bearing long CUG repeats (n>50) that accumulates in nuclear foci and sequesters CUG-binding splicing factors of the muscle blind-like (MBNL) family, involved in the splicing of Tau pre-mRNA among others. However, the precise mechanism leading to Tau mis-splicing and the role of MBNL splicing factors in this process are poorly understood. We therefore used new Tau minigenes that we developed for this purpose to determine how MBNL1 and MBNL2 interact to regulate Tau exon 2 splicing. We demonstrate that an intronic region 250 nucleotides downstream of Tau exon 2 contains cis-regulatory splicing enhancers that are sensitive to MBNL and that bind directly to MBNL1. Both MBNL1 and MBNL2 act as enhancers of Tau exon 2 inclusion. Intriguingly, the interaction of MBNL1 and MBNL2 is required to fully reverse the mis-splicing of Tau exon 2 induced by the trans-dominant effect of long CUG repeats, similar to the DM1 condition. In conclusion, both MBNL1 and MBNL2 are involved in the regulation of Tau exon 2 splicing and the mis-splicing of Tau in DM1 is due to the combined inactivation of both.


Subject(s)
Exons , Myotonic Dystrophy/genetics , RNA-Binding Proteins/physiology , Response Elements , tau Proteins/genetics , Base Sequence , Cell Line, Tumor , Humans , Molecular Sequence Data , RNA Splicing
3.
Biochim Biophys Acta ; 1812(7): 732-42, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21439371

ABSTRACT

Tau is the proteinaceous component of intraneuronal aggregates common to neurodegenerative diseases called Tauopathies, including myotonic dystrophy type 1. In myotonic dystrophy type 1, the presence of microtubule-associated protein Tau aggregates is associated with a mis-splicing of Tau. A toxic gain-of-function at the ribonucleic acid level is a major etiological factor responsible for the mis-splicing of several transcripts in myotonic dystrophy type 1. These are probably the consequence of a loss of muscleblind-like 1 (MBNL1) function or gain of CUGBP1 and ETR3-like factor 1 (CELF1) splicing function. Whether these two dysfunctions occur together or separately and whether all mis-splicing events in myotonic dystrophy type 1 brain result from one or both of these dysfunctions remains unknown. Here, we analyzed the splicing of Tau exons 2 and 10 in the brain of myotonic dystrophy type 1 patients. Two myotonic dystrophy type 1 patients showed a mis-splicing of exon 10 whereas exon 2-inclusion was reduced in all myotonic dystrophy type 1 patients. In order to determine the potential factors responsible for exon 10 mis-splicing, we studied the effect of the splicing factors muscleblind-like 1 (MBNL1), CUGBP1 and ETR3-like factor 1 (CELF1), CUGBP1 and ETR3-like factor 2 (CELF2), and CUGBP1 and ETR3-like factor 4 (CELF4) or a dominant-negative CUGBP1 and ETR-3 like factor (CELF) factor on Tau exon 10 splicing by ectopic expression or siRNA. Interestingly, the inclusion of Tau exon 10 is reduced by CUGBP1 and ETR3-like factor 2 (CELF2) whereas it is insensitive to the loss-of-function of muscleblind-like 1 (MBNL1), CUGBP1 and ETR3-like factor 1 (CELF1) gain-of-function, or a dominant-negative of CUGBP1 and ETR-3 like factor (CELF) factor. Moreover, we observed an increased expression of CUGBP1 and ETR3-like factor 2 (CELF2) only in the brain of myotonic dystrophy type 1 patients with a mis-splicing of exon 10. Taken together, our results indicate the occurrence of a mis-splicing event in myotonic dystrophy type 1 that is induced neither by a loss of muscleblind-like 1 (MBNL1) function nor by a gain of CUGBP1 and ETR3-like factor 1 (CELF1) function but is rather associated to CUGBP1 and ETR3-like factor 2 (CELF2) gain-of-function.


Subject(s)
Exons , Gene Silencing , Nerve Tissue Proteins/genetics , RNA-Binding Proteins/genetics , tau Proteins/genetics , Base Sequence , Brain/metabolism , CELF Proteins , DNA Primers , Humans , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Nerve Tissue Proteins/metabolism , RNA-Binding Proteins/metabolism , tau Proteins/metabolism
4.
Exp Neurol ; 210(2): 467-78, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18177861

ABSTRACT

Neurofibrillary degeneration is often observed in the brain of patients with type 1 myotonic dystrophy (DM1). It consists principally of the aggregation of Tau isoforms that lack exon 2/3 encoded sequences, and is the consequence of the modified splicing of Tau pre-mRNA. In experimental models of DM1, the splicing of several transcripts is modified due to the loss of Muscleblind-like 1 (MBNL1) function. In the present study, we demonstrate that the MBNL1 protein is also present in the human brain, and consists of several isoforms, as shown by RT-PCR and sequencing. In comparison with controls, we show that the adult DM1 brain exhibits modifications in the splicing of MBNL1, with the preferential expression of long MBNL1 isoforms--a splicing pattern similar to that seen in the fetal human brain. In cultured HeLa cells, the presence of long CUG repeats, such as those found in the DM1 mutation, leads to similar changes in the splicing pattern of MBNL1, and the localization of MBNL1 in nuclear RNA foci. Long CUG repeats also reproduce the repression of Tau exon 2/3 inclusion, as in the human disease, suggesting that their effect on MBNL1 expression may lead to changes in Tau splicing. However, while an overall reduction in the expression of MBNL1 mimics the effect of the DM1 mutation, none of the MBNL1 isoforms tested so far modulates the endogenous splicing of Tau. The modified splicing of Tau thus results from a possibly CUG-mediated loss of function of MBNL1, but not from changes in the MBNL1 expression pattern.


Subject(s)
Alternative Splicing , Brain/metabolism , Myotonic Dystrophy , RNA-Binding Proteins/metabolism , Trinucleotide Repeats , tau Proteins/metabolism , Adult , Animals , COS Cells , Chlorocebus aethiops , Cloning, Molecular/methods , Fetus , Gene Expression Regulation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Middle Aged , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Myotonic Dystrophy/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Transfection/methods
5.
Oncology ; 58(4): 311-8, 2000 May.
Article in English | MEDLINE | ID: mdl-10838497

ABSTRACT

Activating mutations of the RET oncogene cause the inheritance of multiple endocrine neoplasia type 2 (MEN2). The RET pre-mRNA is spliced into several transcripts coding for multiple isoforms, including Ret9 and Ret51. When harboring activating mutations in the cytoplasmic region, the Ret51 protein displays a higher in vitro transforming efficiency as compared to the corresponding Ret9 isoform. We investigated whether a more transforming isoform was preferentially expressed in MEN2 tumors as compared to normal tissues or sporadic pheochromocytomas. By quantitative RNases protection assays, we measured the absolute abundance of the 3' splice variants in pheochromocytomas and in normal tissues. The proportion of RET51 transcripts was highly dispersed between tumors and normal tissues. In familial tumors the proportion of RET51 transcripts was significantly larger (48.1%) than in sporadic tumors (36.75%). This result suggests that the preferential expression of the Ret51 protein isoform, even though moderate, is a growth advantage for MEN2 tumors.


Subject(s)
Adrenal Gland Neoplasms/metabolism , Drosophila Proteins , Multiple Endocrine Neoplasia Type 2a/metabolism , Multiple Endocrine Neoplasia Type 2b/metabolism , Pheochromocytoma/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Adrenal Gland Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Germ-Line Mutation , Humans , Isomerism , Pheochromocytoma/genetics , Proto-Oncogene Proteins c-ret , RNA Probes , RNA Splicing
6.
Cancer Res ; 60(5): 1365-70, 2000 Mar 01.
Article in English | MEDLINE | ID: mdl-10728700

ABSTRACT

Pheochromocytomas are tumors originating from chromaffin cells, the large majority of which are sporadic neoplasms. The genetic and molecular events determining their tumorigenesis continue to remain unknown. On the other hand, RET germ-line mutations cause the inheritance of familial tumors in multiple endocrine neoplasia (MEN)-2 diseases, which account for a minority of pheochromocytomas. We investigated the expression of the RET gene in 14 sporadic tumors harboring no activating mutations. A subset of highly RET-expressing tumors (50%) could be distinguished. They showed RET transcript, protein amounts as well as Ret-associated phosphotyrosine levels similar to those measured in MEN-2A-associated pheochromocytomas. We also determined the GDNF and GDNF family receptor alpha (GFRalpha)-1 transcript levels in tumors and in normal tissues. Whereas the GFRalpha-1 transcripts were detected at similar levels in normal tissues and in tumors, GDNF was frequently found expressed in sporadic tumors at levels several times higher than in controls. These results led us to propose the existence of an autocrine or paracrine loop leading to chronic stimulation of the Ret signaling pathway, which could participate in the pathogenesis of a number of sporadic pheochromocytomas.


Subject(s)
Adrenal Gland Neoplasms/metabolism , Drosophila Proteins , Nerve Growth Factors , Pheochromocytoma/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Adrenal Gland Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Glial Cell Line-Derived Neurotrophic Factor , Glial Cell Line-Derived Neurotrophic Factor Receptors , Humans , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Pheochromocytoma/genetics , Phosphorylation , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-ret , Receptor Protein-Tyrosine Kinases/biosynthesis , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction , Tyrosine
SELECTION OF CITATIONS
SEARCH DETAIL
...