Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 8020, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33850174

ABSTRACT

Alzheimer's disease (AD) is characterized by the progressive alterations seen in brain images which give rise to the onset of various sets of symptoms. The variability in the dynamics of changes in both brain images and cognitive impairments remains poorly understood. This paper introduces AD Course Map a spatiotemporal atlas of Alzheimer's disease progression. It summarizes the variability in the progression of a series of neuropsychological assessments, the propagation of hypometabolism and cortical thinning across brain regions and the deformation of the shape of the hippocampus. The analysis of these variations highlights strong genetic determinants for the progression, like possible compensatory mechanisms at play during disease progression. AD Course Map also predicts the patient's cognitive decline with a better accuracy than the 56 methods benchmarked in the open challenge TADPOLE. Finally, AD Course Map is used to simulate cohorts of virtual patients developing Alzheimer's disease. AD Course Map offers therefore new tools for exploring the progression of AD and personalizing patients care.


Subject(s)
Alzheimer Disease , Brain , Aged , Humans , Male , Neuroimaging
2.
Front Neurosci ; 11: 381, 2017.
Article in English | MEDLINE | ID: mdl-28747871

ABSTRACT

Optical coherence tomography provides high-resolution 3D imaging of the posterior segment of the eye. However, quantitative morphological analysis, particularly relevant in retinal degenerative diseases such as glaucoma, has been confined to simple sectorization and averaging with limited spatial sensitivity for detection of clinical markers. In this paper, we present point-wise analysis and visualization of the retinal nerve fiber layer and choroid from cross-sectional data using functional shapes (fshape) registration. The fshape framework matches two retinas, or generates a mean of multiple retinas, by jointly optimizing the surface geometry and functional signals mapped on the surface. We generated group-wise mean retinal nerve fiber layer and choroidal surfaces with the respective layer thickness mapping and showed the difference by age (normal, younger vs. older) and by disease (age-matched older, normal vs. glaucomatous) in the two layers, along with a more conventional sector-based analysis for comparison. The fshape results visualized the detailed spatial patterns of the differences between the age-matched normal and glaucomatous retinal nerve fiber layers, with the glaucomatous layers most significantly thinner in the inferior region close to Bruch's membrane opening. Between the young and older normal cases, choroid was shown to be significantly thinner in the older subjects across all regions, but particularly in the nasal and inferior regions. The results demonstrate a comprehensive and detailed analysis with visualization of morphometric patterns by multiple factors.

3.
Med Image Anal ; 35: 570-581, 2017 01.
Article in English | MEDLINE | ID: mdl-27689896

ABSTRACT

We propose a novel approach for quantitative shape variability analysis in retinal optical coherence tomography images using the functional shape (fshape) framework. The fshape framework uses surface geometry together with functional measures, such as retinal layer thickness defined on the layer surface, for registration across anatomical shapes. This is used to generate a population mean template of the geometry-function measures from each individual. Shape variability across multiple retinas can be measured by the geometrical deformation and functional residual between the template and each of the observations. To demonstrate the clinical relevance and application of the framework, we generated atlases of the inner layer surface and layer thickness of the Retinal Nerve Fiber Layer (RNFL) of glaucomatous and normal subjects, visualizing detailed spatial pattern of RNFL loss in glaucoma. Additionally, a regularized linear discriminant analysis classifier was used to automatically classify glaucoma, glaucoma-suspect, and control cases based on RNFL fshape metrics.


Subject(s)
Retina/diagnostic imaging , Tomography, Optical Coherence/methods , Algorithms , Atlases as Topic , Case-Control Studies , Glaucoma/diagnostic imaging , Glaucoma/pathology , Humans , Retina/anatomy & histology , Visual Fields
SELECTION OF CITATIONS
SEARCH DETAIL
...