Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 468(7326): 903-5, 2010 Dec 16.
Article in English | MEDLINE | ID: mdl-21151106
2.
Nature ; 465(7299): 752-4, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20535205

ABSTRACT

The regular satellites of the giant planets are believed to have finished their accretion concurrent with the planets, about 4.5 Gyr ago. A population of Saturn's small moons orbiting just outside the main rings are dynamically young (less than 10(7) yr old), which is inconsistent with the formation timescale for the regular satellites. They are also underdense ( approximately 600 kg m(-3)) and show spectral characteristics similar to those of the main rings. It has been suggested that they accreted at the rings' edge, but hitherto it has been impossible to model the formation process fully owing to a lack of computational power. Here we report a hybrid simulation in which the viscous spreading of Saturn's rings beyond the Roche limit (the distance beyond which the rings are gravitationally unstable) gives rise to the small moons. The moonlets' mass distribution and orbital architecture are reproduced. The current confinement of the main rings and the existence of the dusty F ring are shown to be direct consequences of the coupling of viscous evolution and satellite formation. Saturn's rings, like a mini protoplanetary disk, may be the last place where accretion was recently active in the Solar System, some 10(6)-10(7) yr ago.

3.
Nature ; 453(7196): 739-44, 2008 Jun 05.
Article in English | MEDLINE | ID: mdl-18528389

ABSTRACT

Saturn's narrow F ring exhibits several unusual features that vary on timescales of hours to years. These include transient clumps, a central core surrounded by a multistranded structure and a regular series of longitudinal channels associated with Prometheus, one of the ring's two 'shepherding' satellites. Several smaller moonlets and clumps have been detected in the ring's immediate vicinity, and a population of embedded objects has been inferred. Here we report direct evidence of moonlets embedded in the ring's bright core, and show that most of the F ring's morphology results from the continual gravitational and collisional effects of small satellites, often combined with the perturbing effect of Prometheus. The F-ring region is perhaps the only location in the Solar System where large-scale collisional processes are occurring on an almost daily basis.

4.
Science ; 318(5856): 1622-4, 2007 Dec 07.
Article in English | MEDLINE | ID: mdl-18063797

ABSTRACT

In the outer regions of Saturn's main rings, strong tidal forces balance gravitational accretion processes. Thus, unusual phenomena may be expected there. The Cassini spacecraft has recently revealed the strange "flying saucer" shape of two small satellites, Pan and Atlas, located in this region, showing prominent equatorial ridges. The accretion of ring particles onto the equatorial surfaces of already-formed bodies embedded in the rings may explain the formation of the ridges. This ridge formation process is in good agreement with detailed Cassini images showing differences between rough polar and smooth equatorial terrains. We propose that Pan and Atlas ridges are kilometers-thick "ring-particle piles" formed after the satellites themselves and after the flattening of the rings but before the complete depletion of ring material from their surroundings.

5.
Science ; 314(5799): 621-3, 2006 Oct 27.
Article in English | MEDLINE | ID: mdl-17008490

ABSTRACT

Although planets are being discovered around stars more massive than the Sun, information about the proto-planetary disks where such planets have built up is sparse. We have imaged mid-infrared emission from polycyclic aromatic hydrocarbons at the surface of the disk surrounding the young intermediate-mass star HD 97048 and characterized the disk. The disk is in an early stage of evolution, as indicated by its large content of dust and its hydrostatic flared geometry, indicative of the presence of a large amount of gas that is well mixed with dust and gravitationally stable. The disk is a precursor of debris disks found around more-evolved A stars such as beta-Pictoris and provides the rare opportunity to witness the conditions prevailing before (or during) planet formation.


Subject(s)
Astronomy , Evolution, Planetary , Planets , Astronomical Phenomena , Polycyclic Aromatic Hydrocarbons , Spectrum Analysis
6.
Nature ; 434(7030): 159-68, 2005 Mar 10.
Article in English | MEDLINE | ID: mdl-15758990

ABSTRACT

Titan, the largest moon of Saturn, is the only satellite in the Solar System with a substantial atmosphere. The atmosphere is poorly understood and obscures the surface, leading to intense speculation about Titan's nature. Here we present observations of Titan from the imaging science experiment onboard the Cassini spacecraft that address some of these issues. The images reveal intricate surface albedo features that suggest aeolian, tectonic and fluvial processes; they also show a few circular features that could be impact structures. These observations imply that substantial surface modification has occurred over Titan's history. We have not directly detected liquids on the surface to date. Convective clouds are found to be common near the south pole, and the motion of mid-latitude clouds consistently indicates eastward winds, from which we infer that the troposphere is rotating faster than the surface. A detached haze at an altitude of 500 km is 150-200 km higher than that observed by Voyager, and more tenuous haze layers are also resolved.

SELECTION OF CITATIONS
SEARCH DETAIL
...