Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Plant Physiol ; 195(1): 232-244, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38246143

ABSTRACT

As sessile organisms, plants are continuously exposed to heterogeneous and changing environments and constantly need to adapt their growth strategies. They have evolved complex mechanisms to recognize various stress factors, activate appropriate signaling pathways, and respond accordingly by reprogramming the expression of multiple genes at the transcriptional, post-transcriptional, and even epigenome levels to tolerate stressful conditions such as drought, high temperature, nutrient deficiency, and pathogenic interactions. Apart from protein-coding genes, long non-coding RNAs (lncRNAs) have emerged as key players in plant adaptation to environmental stresses. They are transcripts larger than 200 nucleotides without protein-coding potential. Still, they appear to regulate a wide range of processes, including epigenetic modifications and chromatin reorganization, as well as transcriptional and post-transcriptional modulation of gene expression, allowing plant adaptation to various environmental stresses. LncRNAs can positively or negatively modulate stress responses, affecting processes such as hormone signaling, temperature tolerance, and nutrient deficiency adaptation. Moreover, they also seem to play a role in stress memory, wherein prior exposure to mild stress enhances plant ability to adapt to subsequent stressful conditions. In this review, we summarize the contribution of lncRNAs in plant adaptation to biotic and abiotic stresses, as well as stress memory. The complex evolutionary conservation of lncRNAs is also discussed and provides insights into future research directions in this field.


Subject(s)
Adaptation, Physiological , RNA, Long Noncoding , Stress, Physiological , RNA, Long Noncoding/genetics , Adaptation, Physiological/genetics , Stress, Physiological/genetics , RNA, Plant/genetics , Plants/genetics , Gene Expression Regulation, Plant , Plant Physiological Phenomena , Epigenesis, Genetic
3.
Sci Rep ; 11(1): 6214, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737531

ABSTRACT

Quality control (QC) methods for genome-wide association studies and fine mapping are commonly used for imputation, however they result in loss of many single nucleotide polymorphisms (SNPs). To investigate the consequences of filtration on imputation, we studied the direct effects on the number of markers, their allele frequencies, imputation quality scores and post-filtration events. We pre-phrased 1031 genotyped individuals from diverse ethnicities and compared the imputed variants to 1089 NCBI recorded individuals for additional validation. Without QC-based variant pre-filtration, we observed no impairment in the imputation of SNPs that failed QC whereas with pre-filtration there was an overall loss of information. Significant differences between frequencies with and without pre-filtration were found only in the range of very rare (5E-04-1E-03) and rare variants (1E-03-5E-03) (p < 1E-04). Increasing the post-filtration imputation quality score from 0.3 to 0.8 reduced the number of single nucleotide variants (SNVs) < 0.001 2.5 fold with or without QC pre-filtration and halved the number of very rare variants (5E-04). Thus, to maintain confidence and enough SNVs, we propose here a two-step filtering procedure which allows less stringent filtering prior to imputation and post-imputation in order to increase the number of very rare and rare variants compared to conservative filtration methods.

4.
EMBO Rep ; 21(5): e48977, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32285620

ABSTRACT

Alternative splicing (AS) is a major source of transcriptome diversity. Long noncoding RNAs (lncRNAs) have emerged as regulators of AS through different molecular mechanisms. In Arabidopsis thaliana, the AS regulators NSRs interact with the ALTERNATIVE SPLICING COMPETITOR (ASCO) lncRNA. Here, we analyze the effect of the knock-down and overexpression of ASCO at the genome-wide level and find a large number of deregulated and differentially spliced genes related to flagellin responses and biotic stress. In agreement, ASCO-silenced plants are more sensitive to flagellin. However, only a minor subset of deregulated genes overlaps with the AS defects of the nsra/b double mutant, suggesting an alternative way of action for ASCO. Using biotin-labeled oligonucleotides for RNA-mediated ribonucleoprotein purification, we show that ASCO binds to the highly conserved spliceosome component PRP8a. ASCO overaccumulation impairs the recognition of specific flagellin-related transcripts by PRP8a. We further show that ASCO also binds to another spliceosome component, SmD1b, indicating that it interacts with multiple splicing factors. Hence, lncRNAs may integrate a dynamic network including spliceosome core proteins, to modulate transcriptome reprogramming in eukaryotes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA, Long Noncoding , Alternative Splicing , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , RNA Splicing Factors/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcriptome
5.
Front Plant Sci ; 9: 1209, 2018.
Article in English | MEDLINE | ID: mdl-30186296

ABSTRACT

Nuclear speckle RNA binding proteins (NSRs) act as regulators of alternative splicing (AS) and auxin-regulated developmental processes such as lateral root formation in Arabidopsis thaliana. These proteins were shown to interact with specific alternatively spliced mRNA targets and at least with one structured lncRNA, named Alternative Splicing Competitor RNA. Here, we used genome-wide analysis of RNAseq to monitor the NSR global role on multiple tiers of gene expression, including RNA processing and AS. NSRs affect AS of 100s of genes as well as the abundance of lncRNAs particularly in response to auxin. Among them, the FPA floral regulator displayed alternative polyadenylation and differential expression of antisense COOLAIR lncRNAs in nsra/b mutants. This may explains the early flowering phenotype observed in nsra and nsra/b mutants. GO enrichment analysis of affected lines revealed a novel link of NSRs with the immune response pathway. A RIP-seq approach on an NSRa fusion protein in mutant background identified that lncRNAs are privileged direct targets of NSRs in addition to specific AS mRNAs. The interplay of lncRNAs and AS mRNAs in NSR-containing complexes may control the crosstalk between auxin and the immune response pathway.

6.
Ann Rheum Dis ; 76(1): 310-314, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27461236

ABSTRACT

OBJECTIVE: More than 40 loci have been associated with ankylosing spondylitis (AS), but less is known about genetic associations in spondyloarthritis (SpA) as a whole. We conducted a family-based genome-wide association study (GWAS) to identify new non-major histocompatibility complex (MHC) genetic factors associated with SpA. METHODS: 906 subjects from 156 French multiplex families, including 438 with SpA, were genotyped using Affymetrix 250K microarrays. Association was tested with Unphased. The best-associated non-MHC single nucleotide polymorphisms (SNPs) were then genotyped in two independent familial cohorts (including 215 French and 294 North American patients with SpA, respectively) to replicate associations. RESULTS: 43 non-MHC SNPs yielded an association signal with SpA in the discovery cohort (p<1×10-4). In the extension studies, association was replicated at a nominal p value of p<0.05 for 16 SNPs in the second cohort and for three SNPs in the third cohort. Combined analysis identified an association close to genome-wide significance between rs7761118, an intronic SNP of MAPK14, and SpA (p=3.5×10-7). Such association appeared to be independent of HLA-B27. CONCLUSIONS: We report here for the first time a family-based GWAS study on SpA and identified an associated polymorphism near MAPK14. Further analyses are needed to better understand the functional basis of this genetic association.


Subject(s)
Mitogen-Activated Protein Kinase 14/genetics , Spondylarthritis/genetics , Adult , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
7.
PLoS One ; 11(3): e0150495, 2016.
Article in English | MEDLINE | ID: mdl-26938218

ABSTRACT

BACKGROUND AND SCOPE: Weight loss success is dependent on the ability to refrain from regaining the lost weight in time. This feature was shown to be largely variable among individuals, and these differences, with their underlying molecular processes, are diverse and not completely elucidated. Altered plasma metabolites concentration could partly explain weight loss maintenance mechanisms. In the present work, a systems biology approach has been applied to investigate the potential mechanisms involved in weight loss maintenance within the Diogenes weight-loss intervention study. METHODS AND RESULTS: A genome wide association study identified SNPs associated with plasma glycine levels within the CPS1 (Carbamoyl-Phosphate Synthase 1) gene (rs10206976, p-value = 4.709e-11 and rs12613336, p-value = 1.368e-08). Furthermore, gene expression in the adipose tissue showed that CPS1 expression levels were associated with successful weight maintenance and with several SNPs within CPS1 (cis-eQTL). In order to contextualize these results, a gene-metabolite interaction network of CPS1 and glycine has been built and analyzed, showing functional enrichment in genes involved in lipid metabolism and one carbon pool by folate pathways. CONCLUSIONS: CPS1 is the rate-limiting enzyme for the urea cycle, catalyzing carbamoyl phosphate from ammonia and bicarbonate in the mitochondria. Glycine and CPS1 are connected through the one-carbon pool by the folate pathway and the urea cycle. Furthermore, glycine could be linked to metabolic health and insulin sensitivity through the betaine osmolyte. These considerations, and the results from the present study, highlight a possible role of CPS1 and related pathways in weight loss maintenance, suggesting that it might be partly genetically determined in humans.


Subject(s)
Caloric Restriction , Carbamoyl-Phosphate Synthase (Ammonia)/genetics , Metabolome , Obesity/genetics , Urea/blood , Weight Loss , Adult , Ammonia/blood , Betaine/blood , Carbamyl Phosphate/blood , Chromosome Mapping , Female , Gene Expression , Gene Regulatory Networks , Genome-Wide Association Study , Glycine/blood , Humans , Insulin Resistance , Lipid Metabolism/genetics , Male , Mitochondria/metabolism , Obesity/blood , Obesity/diet therapy , Obesity/pathology , Polymorphism, Single Nucleotide , Quantitative Trait Loci
8.
Ann Rheum Dis ; 75(7): 1380-5, 2016 07.
Article in English | MEDLINE | ID: mdl-26275432

ABSTRACT

OBJECTIVE: Spondyloarthritis (SpA) is a chronic inflammatory disorder with high heritability but with complex genetics. Apart from HLA-B27, most of the underlying genetic components remain to be identified. We conducted a whole-genome high-density non-parametric linkage analysis to identify new genetic factors of susceptibility to SpA. METHODS: 914 subjects including 462 with SpA from 143 multiplex families were genotyped using Affymetrix 250K microarrays. After quality control, 189 368 single nucleotide polymorphisms (SNPs) were kept for further analyses. Both non-parametric and parametric linkage analyses were performed using Merlin software. Association was tested with Unphased. RESULTS: Non-parametric linkage analysis identified two regions significantly linked to SpA: the major histocompatibility complex (LODmax=24.77) and a new 13q13 locus (LODmax=5.03). Additionally, eight loci achieved suggestive LOD scores, including the previously identified SPA2 locus at 9q33 (LODmax=3.51). Parametric analysis supported a codominant model in 13q13 with a maximum heterogeneity LOD, 'HLOD' score of 3.084 (α=0.28). Identification of meiotic recombination events around the 13q13 linkage peak in affected subjects from the 43 best-linked families allowed us to map the disease interval between 38.753 and 40.040 Mb. Family-based association analysis of the SNPs inside this interval in the best-linked families identified a SNP near FREM2 (rs1945502) which reached a p value close to statistical significance (corrected p=0.08). CONCLUSION: We report here for the first time a significant linkage between 13q13 and SpA. Identification of susceptibility factor inside this chromosomal region through targeted sequencing in linked families is underway.


Subject(s)
Chromosomes, Human, Pair 13/genetics , Genetic Linkage , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Spondylarthritis/genetics , Adult , Female , Genetic Loci , Genome-Wide Association Study , Humans , Male , Middle Aged , Pedigree
9.
Hum Hered ; 75(2-4): 213-9, 2013.
Article in English | MEDLINE | ID: mdl-24081236

ABSTRACT

BACKGROUND: TFAP2B rs987237 is associated with obesity and has shown interaction with the dietary fat-to-carbohydrate ratio, which has an effect on weight loss. We investigated interactions between rs987237 and protein-to-carbohydrate ratio or glycemic index (GI) in relation to weight maintenance after weight loss. METHODS: This study included 742 obese individuals from 8 European countries who participated in the Diet, Obesity, and Genes (DiOGenes) trial, lost ≥ 8% of their initial body weight during an 8-week low-calorie diet and were randomized to one of 5 ad libitum diets with a fixed energy percentage from fat: either low-protein/low-GI, low-protein/high-GI, high-protein/low-GI, or high-protein/high-GI diets, or a control diet for a 6-month weight maintenance period. Using linear regression analyses and additive genetic models, we investigated main and dietary interaction effects of TFAP2B rs987237 in relation to weight maintenance. RESULTS: In total, 468 completers of the trial were genotyped for rs987237. High-protein diets were beneficial for weight maintenance in the AA genotype group (67% of participants), but in the AG and GG groups no differences were observed for low- or high-protein diets. On the high-protein diet, carriers of the obesity risk allele (G allele) regained 1.84 kg (95% CI: 0.02; 3.67, p = 0.047) more body weight per risk allele than individuals on a low-protein diet. There was no interaction effect between rs987237 and GI on weight maintenance. CONCLUSION: TFAP2B rs987237 and dietary protein/carbohydrate interacted to modify weight maintenance. Considering the carbohydrate proportion of the diet, the interaction was different from the previously reported rs987237-fat-to-carbohydrate ratio interaction for weight loss. Thus, TFAP2B-macronutrient interactions might diverge depending on the nutritional state.


Subject(s)
Dietary Proteins/metabolism , Glycemic Index/genetics , Transcription Factor AP-2/genetics , Weight Loss/genetics , Adult , Female , Humans , Male , Polymorphism, Single Nucleotide/genetics , Recommended Dietary Allowances
10.
Plant Physiol ; 161(4): 1694-705, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23426196

ABSTRACT

Despite considerable progress in our knowledge regarding the cell cycle inhibitor of the Kip-related protein (KRP) family in plants, less is known about the coordination of endoreduplication and cell differentiation. In animals, the role of cyclin-dependent kinase (CDK) inhibitors as multifunctional factors coordinating cell cycle regulation and cell differentiation is well documented and involves not only the inhibition of CDK/cyclin complexes but also other mechanisms, among them the regulation of transcription. Interestingly, several plant KRPs have a punctuated distribution in the nucleus, suggesting that they are associated with heterochromatin. Here, one of these chromatin-bound KRPs, KRP5, has been studied in Arabidopsis (Arabidopsis thaliana). KRP5 is expressed in endoreduplicating cells, and loss of KRP5 function decreases endoreduplication, indicating that KRP5 is a positive regulator of endoreduplication. This regulation relies on several mechanisms: in addition to its role in cyclin/CDK kinase inhibition previously described, chromatin immunoprecipitation sequencing data combined with transcript quantification provide evidence that KRP5 regulates the transcription of genes involved in cell wall organization. Furthermore, KRP5 overexpression increases chromocenter decondensation and endoreduplication in the Arabidopsis trithorax-related protein5 (atxr5) atxr6 double mutant, which is deficient for the deposition of heterochromatin marks. Hence, KRP5 could bind chromatin to coordinately control endoreduplication and chromatin structure and allow the expression of genes required for cell elongation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Endoreduplication , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cyclin-Dependent Kinase Inhibitor Proteins/genetics , Cyclins/metabolism , Genes, Plant/genetics , Heterochromatin/metabolism , Models, Biological , Mutation/genetics , Protein Binding/genetics , Protein Transport , Seedlings/metabolism , Transcriptional Activation/genetics
11.
Nucleic Acids Res ; 41(5): 2907-17, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23341037

ABSTRACT

Because regulation of its activity is instrumental either to support cell proliferation and growth or to promote cell death, the universal myo-inositol phosphate synthase (MIPS), responsible for myo-inositol biosynthesis, is a critical enzyme of primary metabolism. Surprisingly, we found this enzyme to be imported in the nucleus and to interact with the histone methyltransferases ATXR5 and ATXR6, raising the question of whether MIPS1 has a function in transcriptional regulation. Here, we demonstrate that MIPS1 binds directly to its promoter to stimulate its own expression by locally inhibiting the spreading of ATXR5/6-dependent heterochromatin marks coming from a transposable element. Furthermore, on activation of pathogen response, MIPS1 expression is reduced epigenetically, providing evidence for a complex regulatory mechanism acting at the transcriptional level. Thus, in plants, MIPS1 appears to have evolved as a protein that connects cellular metabolism, pathogen response and chromatin remodeling.


Subject(s)
Arabidopsis/genetics , Gene Expression Regulation, Plant , Meristem/genetics , Myo-Inositol-1-Phosphate Synthase/physiology , Apoptosis , Arabidopsis/cytology , Arabidopsis/enzymology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/physiology , Cell Nucleus/enzymology , Chromatin Assembly and Disassembly , Cytoplasm/enzymology , DNA Methylation , Epigenesis, Genetic , Flagellin/immunology , Gene Expression , Histones/metabolism , Meristem/cytology , Meristem/enzymology , Methylation , Methyltransferases/metabolism , Methyltransferases/physiology , Myo-Inositol-1-Phosphate Synthase/genetics , Myo-Inositol-1-Phosphate Synthase/metabolism , Plant Immunity/genetics , Promoter Regions, Genetic , Protein Binding , Protein Processing, Post-Translational , Protein Transport , Nicotiana
12.
J Exp Bot ; 63(14): 5061-77, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22865910

ABSTRACT

Recent years have witnessed a breathtaking increase in the availability of genome sequence data, providing evidence of the highly duplicate nature of eukaryotic genomes. Plants are exceptional among eukaryotic organisms in that duplicate loci compose a large fraction of their genomes, partly because of the frequent occurrence of polyploidy (or whole-genome duplication) events. Tandem gene duplication and transposition have also contributed to the large number of duplicated genes in plant genomes. Evolutionary analyses allowed the dynamics of duplicate gene evolution to be studied and several models were proposed. It seems that, over time, many duplicated genes were lost and some of those that were retained gained new functions and/or expression patterns (neofunctionalization) or subdivided their functions and/or expression patterns between them (subfunctionalization). Recent studies have provided examples of genes that originated by duplication with successive diversification within plants. In this review, we focused on the TEL (TERMINAL EAR1-like) genes to illustrate such mechanisms. Emerged from the mei2 gene family, these TEL genes are likely to be land plant-specific. Phylogenetic analyses revealed one or two TEL copies per diploid genome. TEL gene degeneration and loss in several Angiosperm species such as in poplar and maize seem to have occurred. In Arabidopsis thaliana, whose genome experienced at least three polyploidy events followed by massive gene loss and genomic reorganization, two TEL genes were retained and two new shorter TEL-like (MCT) genes emerged. Molecular and expression analyses suggest for these genes sub- and neofunctionalization events, but confirmation will come from their functional characterization.


Subject(s)
Embryophyta/genetics , Evolution, Molecular , Gene Duplication , Genome, Plant , Plant Proteins/genetics , RNA-Binding Proteins/genetics , Phylogeny
13.
PLoS One ; 7(3): e33412, 2012.
Article in English | MEDLINE | ID: mdl-22428046

ABSTRACT

BACKGROUND: The human condition known as Premature Ovarian Failure (POF) is characterized by loss of ovarian function before the age of 40. A majority of POF cases are sporadic, but 10-15% are familial, suggesting a genetic origin of the disease. Although several causal mutations have been identified, the etiology of POF is still unknown for about 90% of the patients. METHODOLOGY/PRINCIPAL FINDINGS: We report a genome-wide linkage and homozygosity analysis in one large consanguineous Middle-Eastern POF-affected family presenting an autosomal recessive pattern of inheritance. We identified two regions with a LOD(max) of 3.26 on chromosome 7p21.1-15.3 and 7q21.3-22.2, which are supported as candidate regions by homozygosity mapping. Sequencing of the coding exons and known regulatory sequences of three candidate genes (DLX5, DLX6 and DSS1) included within the largest region did not reveal any causal mutations. CONCLUSIONS/SIGNIFICANCE: We detect two novel POF-associated loci on human chromosome 7, opening the way to the identification of new genes involved in the control of ovarian development and function.


Subject(s)
Chromosomes, Human, Pair 7/genetics , Consanguinity , Genetic Linkage/genetics , Genetic Loci/genetics , Primary Ovarian Insufficiency/genetics , Arabs , Female , Humans , Lod Score , Microsatellite Repeats/genetics , Pedigree , Sequence Analysis, DNA
14.
Plant Mol Biol ; 78(4-5): 323-36, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22170036

ABSTRACT

The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16-18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.


Subject(s)
Bryopsida/growth & development , Plant Proteins/metabolism , Plant Shoots/growth & development , RNA-Binding Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Molecular Sequence Data , Mutation , Phenotype , Phylogeny , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Shoots/metabolism , Poaceae/genetics , RNA-Binding Proteins/genetics
15.
Am J Med Genet B Neuropsychiatr Genet ; 153B(8): 1425-33, 2010 Dec 05.
Article in English | MEDLINE | ID: mdl-20886542

ABSTRACT

Bipolar disorder has a genetic component, but the mode of inheritance remains unclear. A previous genome scan conducted in 70 European families led to detect eight regions linked to bipolar disease. Here, we present an investigation of whether the phenotypic heterogeneity of the disorder corresponds to genetic heterogeneity in these regions using additional markers and an extended sample of families. The MLS statistic was used for linkage analyses. The predivided sample test and the maximum likelihood binomial methods were used to test genetic homogeneity between early-onset bipolar type I (cut-off of 22 years) and other types of the disorder (later onset of bipolar type I and early-onset bipolar type II), using a total of 138 independent bipolar-affected sib-pairs. Analysis of the extended sample of families supports linkage in four regions (2q14, 3p14, 16p23, and 20p12) of the eight regions of linkage suggested by our previous genome scan. Heterogeneity testing revealed genetic heterogeneity between early and late-onset bipolar type I in the 2q14 region (P = 0.0001). Only the early form of the bipolar disorder but not the late form appeared to be linked to this region. This region may therefore include a genetic factor either specifically involved in the early-onset bipolar type I or only influencing the age at onset (AAO). Our findings illustrate that stratification according to AAO may be valuable for the identification of genetic vulnerability polymorphisms. © 2010 Wiley-Liss, Inc.


Subject(s)
Age of Onset , Bipolar Disorder/genetics , Chromosomes, Human, Pair 2/genetics , Genetic Heterogeneity , Genetic Linkage , Adolescent , Bipolar Disorder/epidemiology , Chromosome Mapping , Data Interpretation, Statistical , Europe , Female , Genetic Association Studies , Genetic Markers , Genetic Predisposition to Disease , Genotype , Humans , Male , Young Adult
16.
Am J Hum Genet ; 87(3): 392-9, 2010 Sep 10.
Article in English | MEDLINE | ID: mdl-20797690

ABSTRACT

Primary hyperoxaluria (PH) is an autosomal-recessive disorder of endogenous oxalate synthesis characterized by accumulation of calcium oxalate primarily in the kidney. Deficiencies of alanine-glyoxylate aminotransferase (AGT) or glyoxylate reductase (GRHPR) are the two known causes of the disease (PH I and II, respectively). To determine the etiology of an as yet uncharacterized type of PH, we selected a cohort of 15 non-PH I/PH II patients from eight unrelated families with calcium oxalate nephrolithiasis for high-density SNP microarray analysis. We determined that mutations in an uncharacterized gene, DHDPSL, on chromosome 10 cause a third type of PH (PH III). To overcome the difficulties in data analysis attributed to a state of compound heterozygosity, we developed a strategy of "heterozygosity mapping"-a search for long heterozygous patterns unique to all patients in a given family and overlapping between families, followed by reconstruction of haplotypes. This approach enabled us to determine an allelic fragment shared by all patients of Ashkenazi Jewish descent and bearing a 3 bp deletion in DHDPSL. Overall, six mutations were detected: four missense mutations, one in-frame deletion, and one splice-site mutation. Our assumption is that DHDPSL is the gene encoding 4-hydroxy-2-oxoglutarate aldolase, catalyzing the final step in the metabolic pathway of hydroxyproline.


Subject(s)
Hyperoxaluria, Primary/genetics , Mutation/genetics , Oxo-Acid-Lyases/genetics , Proteins/genetics , Alleles , Amino Acid Sequence , Base Sequence , Child , Child, Preschool , DNA Mutational Analysis , Family , Female , Humans , Hydroxyproline/metabolism , Infant , Infant, Newborn , Jews/genetics , Male , Metabolic Networks and Pathways , Molecular Sequence Data , Oxalates/metabolism , Oxo-Acid-Lyases/chemistry , Pedigree , Proteins/chemistry
17.
Mol Plant ; 3(4): 729-39, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20603381

ABSTRACT

The complex responses of eukaryotic cells to external factors are governed by several transcriptional and post-transcriptional processes. Several of them occur in the nucleus and have been linked to the action of non-protein-coding RNAs (or npcRNAs), both long and small npcRNAs, that recently emerged as major regulators of gene expression. Regulatory npcRNAs acting in the nucleus include silencing-related RNAs, intergenic npcRNAs, natural antisense RNAs, and other aberrant RNAs resulting from the interplay between global transcription and RNA processing activities (such as Dicers and RNA-dependent polymerases). Generally, the resulting npcRNAs exert their regulatory effects through interactions with RNA-binding proteins (or RBPs) within ribonucleoprotein particles (or RNPs). A large group of RBPs are implicated in the silencing machinery through small interfering RNAs (siRNAs) and their localization suggests that several act in the nucleus to trigger epigenetic and chromatin changes at a whole-genome scale. Other nuclear RBPs interact with npcRNAs and change their localization. In the fission yeast, the RNA-binding Mei2p protein, playing pivotal roles in meiosis, interact with a meiotic npcRNA involved in its nuclear re-localization. Related processes have been identified in plants and the ENOD40 npcRNA was shown to re-localize a nuclear-speckle RBP from the nucleus to the cytoplasm in Medicago truncatula. Plant RBPs have been also implicated in RNA-mediated chromatin silencing in the FLC locus through interaction with specific antisense transcripts. In this review, we discuss the interactions between RBPs and npcRNAs in the context of nuclear-related processes and their implication in plant development and stress responses. We propose that these interactions may add a regulatory layer that modulates the interactions between the nuclear genome and the environment and, consequently, control plant developmental plasticity.


Subject(s)
Cell Nucleus/metabolism , Plant Proteins/metabolism , RNA, Untranslated/genetics , RNA-Binding Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Models, Biological , Plant Proteins/genetics , RNA-Binding Proteins/genetics
18.
Planta ; 231(3): 525-35, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19943172

ABSTRACT

TERMINAL EAR1-like (TEL) genes encode putative RNA-binding proteins only found in land plants. Previous studies suggested that they may regulate tissue and organ initiation in Poaceae. Two TEL genes were identified in both Populus trichocarpa and the hybrid aspen Populus tremula x P. alba, named, respectively, PoptrTEL1-2 and PtaTEL1-2. The analysis of the organisation around the PoptrTEL genes in the P. trichocarpa genome and the estimation of the synonymous substitution rate for PtaTEL1-2 genes indicate that the paralogous link between these two Populus TEL genes probably results from the Salicoid large-scale gene-duplication event. Phylogenetic analyses confirmed their orthology link with the other TEL genes. The expression pattern of both PtaTEL genes appeared to be restricted to the mother cells of the plant body: leaf founder cells, leaf primordia, axillary buds and root differentiating tissues, as well as to mother cells of vascular tissues. Most interestingly, PtaTEL1-2 transcripts were found in differentiating cells of secondary xylem and phloem, but probably not in the cambium itself. Taken together, these results indicate specific expression of the TEL genes in differentiating cells controlling tissue and organ development in Populus (and other Angiosperm species).


Subject(s)
Plant Proteins/genetics , Populus/genetics , Amino Acid Sequence , Cell Differentiation , Evolution, Molecular , Gene Duplication , Genome, Plant , In Situ Hybridization , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Populus/growth & development , Populus/metabolism , RNA, Messenger/metabolism , Sequence Alignment , Sequence Analysis, Protein , Transcription, Genetic
19.
PLoS Genet ; 5(6): e1000528, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19543369

ABSTRACT

Spondyloarthritis (SpA) is a chronic inflammatory disorder with a strong genetic predisposition dominated by the role of HLA-B27. However, the contribution of other genes to the disease susceptibility has been clearly demonstrated. We previously reported significant evidence of linkage of SpA to chromosome 9q31-34. The current study aimed to characterize this locus, named SPA2. First, we performed a fine linkage mapping of SPA2 (24 cM) with 28 microsatellite markers in 149 multiplex families, which allowed us to reduce the area of investigation to an 18 cM (13 Mb) locus delimited by the markers D9S279 and D9S112. Second, we constructed a linkage disequilibrium (LD) map of this region with 1,536 tag single-nucleotide polymorphisms (SNPs) in 136 families (263 patients). The association was assessed using a transmission disequilibrium test. One tag SNP, rs4979459, yielded a significant P-value (4.9 x 10(-5)). Third, we performed an extension association study with rs4979459 and 30 surrounding SNPs in LD with it, in 287 families (668 patients), and in a sample of 139 cases and 163 controls. Strong association was observed in both familial and case/control datasets for several SNPs. In the replication study, carried with 8 SNPs in an independent sample of 232 cases and 149 controls, one SNP, rs6478105, yielded a nominal P-value<3 x 10(-2). Pooled case/control study (371 cases and 312 controls) as well as combined analysis of extension and replication data showed very significant association (P<5 x 10(-4)) for 6 of the 8 latter markers (rs7849556, rs10817669, rs10759734, rs6478105, rs10982396, and rs10733612). Finally, haplotype association investigations identified a strongly associated haplotype (P<8.8 x 10(-5)) consisting of these 6 SNPs and located in the direct vicinity of the TNFSF15 gene. In conclusion, we have identified within the SPA2 locus a haplotype strongly associated with predisposition to SpA which is located near to TNFSF15, one of the major candidate genes in this region.


Subject(s)
Genetic Predisposition to Disease , Linkage Disequilibrium , Spondylarthritis/genetics , Tumor Necrosis Factor Ligand Superfamily Member 15/genetics , Adult , Case-Control Studies , Female , Haplotypes , Humans , Male , Middle Aged , Pedigree , Polymorphism, Single Nucleotide , White People/genetics
20.
Genetics ; 178(4): 2227-35, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18430945

ABSTRACT

Fertility quantitative trait loci (QTL) are of high interest in dairy cattle since insemination failure has dramatically increased in some breeds such as Holstein. High-throughput SNP analysis and SNP microarrays give the opportunity to genotype many animals for hundreds SNPs per chromosome. In this study, due to these techniques a dense SNP marker map was used to fine map a QTL underlying nonreturn rate measured 90 days after artificial insemination previously detected with a low-density microsatellite marker map. A granddaughter design with 17 Holstein half-sib families (926 offspring) was genotyped for a set of 437 SNPs mapping to BTA3. Linkage analysis was performed by both regression and variance components analysis. An additional analysis combining both linkage analysis and linkage-disequilibrium information was applied. This method first estimated identity-by-descent probabilities among base haplotypes. These probabilities were then used to group the base haplotypes in different clusters. A QTL explaining 14% of the genetic variance was found with high significance (P < 0.001) at position 19 cM with the linkage analysis and four sires were estimated to be heterozygous (P < 0.05). Addition of linkage-disequilibrium information refined the QTL position to a set of narrow peaks. The use of the haplotypes of heterozygous sires offered the possibility to give confidence in some peaks while others could be discarded. Two peaks with high likelihood-ratio test values in the region of which heterozygous sires shared a common haplotype appeared particularly interesting. Despite the fact that the analysis did not fine map the QTL in a unique narrow region, the method proved to be able to handle efficiently and automatically a large amount of information and to refine the QTL position to a small set of narrow intervals. In addition, the QTL identified was confirmed to have a large effect (explaining 13.8% of the genetic variance) on dairy cow fertility as estimated by nonreturn rate at 90 days.


Subject(s)
Cattle/genetics , Fertility/genetics , Physical Chromosome Mapping , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Alleles , Animals , Base Sequence , Chromosomes, Mammalian/genetics , Female , Haplotypes , Heterozygote , Linkage Disequilibrium/genetics , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...