Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 128(7): 1375-1384, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38348852

ABSTRACT

We present an efficient method for modeling the single and double ionization dynamics of the H2 molecule in ultrashort, intense laser fields. This method is based on a semianalytical approach to calculate the time-dependent single and double molecular ionization rates and on a numerical approach to describe the vibrational motion that takes place in the intermediate molecular ion H2+. This model allows for the prediction of the single and double ionization probabilities of the H2 molecule to be made over a wide range of frequencies and laser intensities with limited computational time while providing a realistic estimate of the energy of the products of the dissociative ionization and of the Coulomb explosion of the H2 molecule. The effect of vibrational dynamics on ionization yields and proton kinetic energy release spectra is demonstrated and, in the case of the latter, is discussed in terms of basic strong-field molecular fragmentation mechanisms.

2.
Nature ; 623(7987): 502-508, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968524

ABSTRACT

The capability to reach ultracold atomic temperatures in compact instruments has recently been extended into space1,2. Ultracold temperatures amplify quantum effects, whereas free fall allows further cooling and longer interactions time with gravity-the final force without a quantum description. On Earth, these devices have produced macroscopic quantum phenomena such as Bose-Einstein condensates (BECs), superfluidity, and strongly interacting quantum gases3. Terrestrial quantum sensors interfering the superposition of two ultracold atomic isotopes have tested the universality of free fall (UFF), a core tenet of Einstein's classical gravitational theory, at the 10-12 level4. In space, cooling the elements needed to explore the rich physics of strong interactions or perform quantum tests of the UFF has remained elusive. Here, using upgraded hardware of the multiuser Cold Atom Lab (CAL) instrument aboard the International Space Station (ISS), we report, to our knowledge, the first simultaneous production of a dual-species BEC in space (formed from 87Rb and 41K), observation of interspecies interactions, as well as the production of 39K ultracold gases. Operating a single laser at a 'magic wavelength' at which Rabi rates of simultaneously applied Bragg pulses are equal, we have further achieved the first spaceborne demonstration of simultaneous atom interferometry with two atomic species (87Rb and 41K). These results are an important step towards quantum tests of UFF in space and will allow scientists to investigate aspects of few-body physics, quantum chemistry and fundamental physics in new regimes without the perturbing asymmetry of gravity.

3.
Nat Commun ; 13(1): 7889, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36550117

ABSTRACT

Ultracold quantum gases are ideal sources for high-precision space-borne sensing as proposed for Earth observation, relativistic geodesy and tests of fundamental physical laws as well as for studying new phenomena in many-body physics during extended free fall. Here we report on experiments with the Cold Atom Lab aboard the International Space Station, where we have achieved exquisite control over the quantum state of single 87Rb Bose-Einstein condensates paving the way for future high-precision measurements. In particular, we have applied fast transport protocols to shuttle the atomic cloud over a millimeter distance with sub-micrometer accuracy and subsequently drastically reduced the total expansion energy to below 100 pK with matter-wave lensing techniques.

4.
Phys Rev Lett ; 127(10): 100401, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34533345

ABSTRACT

In contrast to light, matter-wave optics of quantum gases deals with interactions even in free space and for ensembles comprising millions of atoms. We exploit these interactions in a quantum degenerate gas as an adjustable lens for coherent atom optics. By combining an interaction-driven quadrupole-mode excitation of a Bose-Einstein condensate (BEC) with a magnetic lens, we form a time-domain matter-wave lens system. The focus is tuned by the strength of the lensing potential and the oscillatory phase of the quadrupole mode. By placing the focus at infinity, we lower the total internal kinetic energy of a BEC comprising 101(37) thousand atoms in three dimensions to 3/2 k_{B}·38_{-7}^{+6} pK. Our method paves the way for free-fall experiments lasting ten or more seconds as envisioned for tests of fundamental physics and high-precision BEC interferometry, as well as opens up a new kinetic energy regime.

5.
Nature ; 562(7727): 391-395, 2018 10.
Article in English | MEDLINE | ID: mdl-30333576

ABSTRACT

Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose-Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose-Einstein condensation have the potential to have much greater sensitivity to inertial forces than do similar ground-based interferometers. On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, we created Bose-Einstein condensates in space and conducted 110 experiments central to matter-wave interferometry, including laser cooling and trapping of atoms in the presence of the large accelerations experienced during launch. Here we report on experiments conducted during the six minutes of in-space flight in which we studied the phase transition from a thermal ensemble to a Bose-Einstein condensate and the collective dynamics of the resulting condensate. Our results provide insights into conducting cold-atom experiments in space, such as precision interferometry, and pave the way to miniaturizing cold-atom and photon-based quantum information concepts for satellite-based implementation. In addition, space-borne Bose-Einstein condensation opens up the possibility of quantum gas experiments in low-gravity conditions1,2.

6.
J Chem Phys ; 144(15): 154109, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27389211

ABSTRACT

We introduce a non-Hermitian Schrödinger-type approximation of optical Bloch equations for two-level systems. This approximation provides a complete and accurate description of the coherence and decoherence dynamics in both weak and strong laser fields at the cost of losing accuracy in the description of populations. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters.

7.
Phys Rev Lett ; 113(16): 163603, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25361258

ABSTRACT

We determine the optical response of a thin and dense layer of interacting quantum emitters. We show that, in such a dense system, the Lorentz redshift and the associated interaction broadening can be used to control the transmission and reflection spectra. In the presence of overlapping resonances, a dipole-induced electromagnetic transparency (DIET) regime, similar to electromagnetically induced transparency (EIT), may be achieved. DIET relies on destructive interference between the electromagnetic waves emitted by quantum emitters. Carefully tuning material parameters allows us to achieve narrow transmission windows in, otherwise, completely opaque media. We analyze in detail this coherent and collective effect using a generalized Lorentz model and show how it can be controlled. Several potential applications of the phenomenon, such as slow light, are proposed.

8.
J Chem Phys ; 138(2): 024108, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23320669

ABSTRACT

We introduce a non-Hermitian approximation of Bloch optical equations. This approximation provides a complete description of the excitation, relaxation, and decoherence dynamics of ensembles of coupled quantum systems in weak laser fields, taking into account collective effects and dephasing. In the proposed method, one propagates the wave function of the system instead of a complete density matrix. Relaxation and dephasing are taken into account via automatically adjusted time-dependent gain and decay rates. As an application, we compute the numerical wave packet solution of a time-dependent non-Hermitian Schrödinger equation describing the interaction of electromagnetic radiation with a quantum nano-structure, and compare the calculated transmission, reflection, and absorption spectra with those obtained from the numerical solution of the Liouville-von Neumann equation. It is shown that the proposed wave packet scheme is significantly faster than the propagation of the full density matrix while maintaining small error. We provide the key ingredients for easy-to-use implementation of the proposed scheme and identify the limits and error scaling of this approximation.

9.
Phys Rev Lett ; 98(25): 253003, 2007 Jun 22.
Article in English | MEDLINE | ID: mdl-17678021

ABSTRACT

The ultrafast electronic and nuclear dynamics of H(2) laser-induced double ionization is studied using a time-dependent wave packet approach that goes beyond the fixed nuclei approximation. The double ionization pathways are analyzed by following the evolution of the total wave function during and after the pulse. The rescattering of the first ionized electron produces a coherent superposition of excited molecular states which presents a pronounced transient H(+)H(-) character. This attosecond excitation is followed by field-induced double ionization and by the formation of short-lived autoionizing states which decay via double ionization. These two double ionization mechanisms may be identified by their signatures imprinted in the kinetic-energy distribution of the ejected protons.

10.
Appl Opt ; 43(12): 2580-7, 2004 Apr 20.
Article in English | MEDLINE | ID: mdl-15119629

ABSTRACT

We present the first modeling of the light scattered by a paint layer in a bidirectional configuration. The studied medium is composed of small concentrated pigments embedded in an oil binder. The color is modulated by changing the number of paint layers, called glazes. The radiative transfer equation is established for incoherent light scattered by the pigments with use of a collimated illumination. The equation is solved by use of the auxiliary function method. This new method, applied here for the first time to a practical case, allows for exact computations of the scattered flux for any incident and collected directions. Spectroscopic and goniometric measurements are implemented in bidirectional and back-scattered configurations. The excellent agreement between the measurement and the simulation validates the assumptions used for the glaze model and proves the effectiveness of the auxiliary function method.

11.
Phys Rev Lett ; 88(7): 077901, 2002 Feb 18.
Article in English | MEDLINE | ID: mdl-11863941

ABSTRACT

A controlled interference is proposed to reduce, by two orders of magnitude, the decoherence of a quantum gate for which the gate fidelity is limited by coupling to states other than the /0> and /1> qubit states. This phenomenon is demonstrated in an ultracold neutral atom implementation of a phase gate using qubits based on motional states in individual wells of an optical lattice.

SELECTION OF CITATIONS
SEARCH DETAIL
...