Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Microbiol ; 95: 103690, 2021 May.
Article in English | MEDLINE | ID: mdl-33397631

ABSTRACT

Spores from 21 strains from different genera were heat-treated and stored in different sets of process conditions (4 temperatures and 3 pH levels) defined to prevent growth. In these conditions, spores surviving the heat treatment progressively lost viability during storage. Different inactivation curve shapes (linear, shoulder and tailing) and different sensitivities to storage were observed. B. coagulans showed the fastest inactivation kinetics, with more than 4-log reduction of spore population within 24 h after heating and G. stearothermophilus displayed slower inactivation kinetics, whereas all the anaerobic strains studied (M. thermoacetica and Thermoanaerobacterium spp.) proved resistant to storage conditions, with no destruction detected during 90 days in most cases. Inactivation rates were relatively unaffected by sub-lethal pH but sharply accelerated by temperature: Inactivation became faster as temperature increased (in the 8 °C-55 °C temperature range), with growth blocked by low pH in sub-lethal temperatures. There were changes in surviving spore numbers after the heat-treatment phase. This has implications and applications in canned food industries, as the probability of a retorted sample testing as non-stable, meaning possible spoilage, may decrease with time. In simple terms, a batch of low-acid canned food that tests as non-shelf-stable after an incubation test i.e. positive growth conditions, may later become negative if stored at room temperature (below the minimal growth temperature for thermophilic spores), which may change the marketability of the batch.


Subject(s)
Bacteria/growth & development , Spores, Bacterial/chemistry , Bacteria/chemistry , Hot Temperature , Hydrogen-Ion Concentration , Kinetics , Microbial Viability , Spores, Bacterial/growth & development
2.
Environ Sci Technol ; 51(19): 11224-11234, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28836763

ABSTRACT

The study of airborne bacteria relies on a sampling strategy that preserves their integrity and in situ physiological state, e.g. viability, cultivability, metabolic activity, and ice-nucleation activity. Because ambient air harbors low concentrations of bacteria, an effective bioaerosol sampler should have a high sampling efficiency and a high airflow. We characterize a high-flow-rate impinger with respect to particle collection and retention efficiencies in the range 0.5-3.0 µm, and we investigated its ability to preserve the physiological state of selected bacterial species and seawater bacterial community in comparison with four commercial bioaerosol samplers. The collection efficiency increased with particle size and the cutoff diameter was between 0.5 and 1 µm. During sampling periods of 120-300 min, the impinger retained the cultivability, metabolic activity, viability, and ice-nucleation activity of investigated bacteria. Field studies in semiurban, high-altitude, and polar environments included periods of low bacterial air concentrations, thus demonstrating the benefits of the impinger's high flow rate. In conclusion, the impinger described here has many advantages compared with other bioaerosol samplers currently on the market: a potential for long sampling time, a high flow rate, a high sampling and retention efficiency, low costs, and applicability for diverse downstream microbiological and molecular analyses.


Subject(s)
Aerosols , Bacteria , Ice , Air Microbiology , Environmental Monitoring , Particle Size , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL
...