Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
J Neuroendocrinol ; 29(3)2017 03.
Article in English | MEDLINE | ID: mdl-28166374

ABSTRACT

EM66 is a conserved 66-amino acid peptide derived from secretogranin II (SgII), a member of the granin protein family. EM66 is widely distributed in secretory granules of endocrine and neuroendocrine cells, as well as in hypothalamic neurones. Although EM66 is abundant in the hypothalamus, its physiological function remains to be determined. The present study aimed to investigate a possible involvement of EM66 in the hypothalamic regulation of feeding behaviour. We show that i.c.v. administration of EM66 induces a drastic dose-dependent inhibition of food intake in mice deprived of food for 18 hours, which is associated with an increase of hypothalamic pro-opiomelanocortin (POMC) and melanocortin-3 receptor mRNA levels and c-Fos immunoreactivity in the POMC neurones of the arcuate nucleus. By contrast, i.c.v. injection of EM66 does not alter the hypothalamic expression of neuropeptide Y (NPY), or that of its Y1 and Y5 receptors. A 3-month high-fat diet (HFD) leads to an important decrease of POMC and SgII mRNA levels in the hypothalamus, whereas NPY gene expression is not affected. Finally, we show that a 48 hours of fasting in HFD mice decreases the expression of POMC and SgII mRNA, which is not observed in mice fed a standard chow. Taken together, the present findings support the view that EM66 is a novel anorexigenic neuropeptide regulating hypothalamic feeding behaviour, at least in part, by activating the POMC neurones of the arcuate nucleus.


Subject(s)
Appetite Regulation/drug effects , Feeding Behavior/drug effects , Hypothalamus/drug effects , Peptide Fragments/pharmacology , Secretogranin II/pharmacology , Animals , Caloric Restriction , Food Preferences/drug effects , Hypothalamus/metabolism , Infusions, Intraventricular , Male , Mice , Mice, Inbred C57BL , Peptide Fragments/administration & dosage , Secretogranin II/administration & dosage , Secretogranin II/chemistry
2.
Science ; 315(5813): 766; author reply 766, 2007 Feb 09.
Article in English | MEDLINE | ID: mdl-17289961

ABSTRACT

Zhang et al. (Research Articles, 11 November 2005, p. 996) reported that obestatin, a peptide derived from the ghrelin precursor, activated the orphan G protein-coupled receptor GPR39. However, we found that I125-obestatin does not bind GPR39 and observed no effects of obestatin on GPR39-transfected cells in various functional assays (cyclic adenosine monophosphate production, calcium mobilization, and GPR39 internalization). Our results indicate that obestatin is not the cognate ligand for GPR39.


Subject(s)
Peptide Hormones/metabolism , Receptors, G-Protein-Coupled/metabolism , Amino Acid Sequence , Animals , Base Sequence , CHO Cells , Calcium/metabolism , Cell Membrane/metabolism , Colforsin/pharmacology , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Ghrelin , Humans , Ligands , Molecular Sequence Data , Peptide Hormones/genetics , Peptide Hormones/pharmacology , Pituitary Gland/cytology , Pituitary Gland/metabolism , Protein Binding , Receptors, G-Protein-Coupled/genetics , Transfection
3.
Neuropharmacology ; 52(2): 376-86, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17011599

ABSTRACT

By using an optimized [(35)S]GTPgammaS binding assay, the functional activities (potency and efficacy) of peptides belonging to three members of the RFamide family; Neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP) and 26RFamide, were investigated on NPFF(1) and NPFF(2) receptors stably expressed in Chinese Hamster Ovary (CHO) cells. Despite their large differences in affinity and selectivity, all analogues tested behaved as agonists toward NPFF(1) and NPFF(2) receptors. High NaCl concentration in the assay strongly increased the efficacy toward NPFF(2) receptors and augmented differences among agonists. In low sodium conditions, whereas the potencies of agonists correlated with their affinities for NPFF(1) receptors, NPFF(2) receptors exhibited an extraordinary activity since all compounds tested displayed EC(50) values of GTPgammaS binding lower than their K(I) values. Comparisons of functional values between NPFF(1) and NPFF(2) receptors revealed unexpected potent selective NPFF(2) agonists especially for the PLRFamide and the VGRFamide sequences. By using blocker peptides, we also show that Galpha(i3) and Galpha(s) are the main transducers of NPFF(1) receptors while NPFF(2) are probably coupled with Galpha(i2), Galpha(i3), Galpha(o) and Galpha(s) proteins. Our data indicate that NPPF(1) and NPFF(2) receptors are differently coupled to G proteins in CHO cells.


Subject(s)
Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Neuropeptides/metabolism , Receptors, Neuropeptide/metabolism , Animals , CHO Cells , Cell Membrane/diagnostic imaging , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Drug Interactions , GTP-Binding Protein alpha Subunits/metabolism , Humans , Isotopes/pharmacokinetics , Protein Binding/drug effects , Radionuclide Imaging , Saponins/pharmacology
4.
J Physiol ; 573(Pt 1): 237-49, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16543265

ABSTRACT

The close link between reproductive function and body energy stores relies on a complex neuroendocrine network of common regulatory signals, the nature of which is yet to be fully elucidated. Recently, 26RFa was identified in amphibians and mammals as a conserved hypothalamic neuropeptide of the RFamide family, with a potent orexigenic activity. Yet, despite its proposed role as hypophysiotropic factor, the function of 26RFa in the control of pituitary gonadotropins and, hence, of the reproductive axis remains unexplored. In the present study, the effects of 26RFa on gonadotropin secretion were evaluated in the rat by a combination of in vitro and in vivo approaches. At the pituitary, 26RFa dose-dependently enhanced basal and gonadotropin-releasing hormone (GnRH)-stimulated luteinizing hormone (LH) secretion from male and cyclic female rats. This effect was mimicked by the active fragment 26RFa(20-26), as well as by the related 43RFa peptide. Moreover, expression of the genes encoding 26RFa and its putative receptor, GPR103, was demonstrated in rat pituitary throughout postnatal development. In vivo, intracerebral injection of 26RFa evoked a significant increase in serum LH levels in cyclic and ovariectomized females; this response which was also observed after central injection of 26RFa(20-26) and 43RFa peptides, as well as after systemic administration of 26RFa. Conversely, central and systemic injection of 26RFa failed to significantly modify gonadotropin secretion in adult male rats, even after repeated administration of the peptide. In summary, we present herein novel evidence for the potential role of the orexigenic peptide 26RFa in the control of the gonadotropic axis, thus suggesting its potential involvement in the joint control of energy balance and reproduction, especially in the female.


Subject(s)
Gonadotropins/metabolism , Hypothalamus/metabolism , Luteinizing Hormone/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Amino Acid Sequence , Animals , Dose-Response Relationship, Drug , Female , Follicle Stimulating Hormone/metabolism , Gene Expression , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/drug effects , Injections, Intraventricular , Intracellular Signaling Peptides and Proteins/metabolism , Male , Molecular Sequence Data , Neuropeptides/pharmacology , Orexins , Pituitary Gland/drug effects , Pituitary Gland/metabolism , RNA, Messenger/analysis , Rats , Rats, Wistar
5.
Microsc Res Tech ; 54(3): 137-57, 2001 Aug 01.
Article in English | MEDLINE | ID: mdl-11458398

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide (PACAP), a novel peptide of the secretin/glucagon/vasoactive intestinal polypeptide superfamily, has been initially characterized in mammals in 1989 and, only 2 years later, its counterpart has been isolated in amphibians. A number of studies conducted in the frog Rana ridibunda have demonstrated that PACAP is widely distributed in the central nervous system (particularly in the hypothalamus and the median eminence) and in peripheral organs including the adrenal gland. The cDNAs encoding the PACAP precursor and 3 types of PACAP receptors have been cloned in amphibians and their distribution has been determined by in situ hybridization histochemistry. Ontogenetic studies have revealed that PACAP is expressed early in the brain of tadpoles, soon after hatching. In the frog Rana ridibunda, PACAP exerts a large array of biological effects in the brain, pituitary, adrenal gland, and ovary, suggesting that, in amphibians as in mammals, PACAP may act as neurotrophic factor, a neurotransmitter and a neurohormone.


Subject(s)
Adrenal Glands/metabolism , Brain/metabolism , Neuropeptides/metabolism , Rana ridibunda/metabolism , Receptors, Pituitary Hormone/metabolism , Amino Acid Sequence , Animals , Humans , Molecular Sequence Data , Neuropeptides/chemistry , Neuropeptides/genetics , Neuropeptides/isolation & purification , Pituitary Adenylate Cyclase-Activating Polypeptide , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
6.
J Comp Neurol ; 429(2): 242-52, 2001 Jan 08.
Article in English | MEDLINE | ID: mdl-11116217

ABSTRACT

In the present study, we have investigated the distribution and biochemical characteristics of hypocretin (hcrt) -like immunoreactivity in the central nervous system (CNS) of the frog Rana ridibunda by using an antiserum directed against rat hcrt2. Immunoreactive cell bodies were only detected in four diencephalic nuclei, including the anterior preoptic area and the suprachiasmatic, magnocellular, and ventral hypothalamic nuclei. In contrast, hcrt2-immunoreactive fibers were widely distributed throughout the frog CNS. In particular, a high density of hcrt-positive fibers was detected in several areas of the telencephalon, including the olfactory bulb, the nucleus of the diagonal band of Broca, and the amygdala. A dense network of hcrt-containing fibers was observed in all thalamic and hypothalamic nuclei. A low to moderate density of immunoreactive fibers was also found in the mesencephalon, rhombencephalon, and spinal cord. Reversed-phase high performance liquid chromatography analysis of frog brain extracts revealed that hcrt2-immunoreactive material eluted as two peaks, the major one exhibiting the same retention time as synthetic rat hcrt2. The present data provide the first detailed mapping of the hcrt neuronal system in the CNS of a nonmammalian vertebrate. The occurrence of hcrt-containing cell bodies in the hypothalamus and the widespread distribution of hcrt-immunoreactive fibers throughout the brain and spinal cord suggest that, in amphibians, hcrts may exert neuroendocrine, neurotransmitter, and/or neuromodulator activities.


Subject(s)
Brain/metabolism , Neuropeptides/metabolism , Animals , Brain/anatomy & histology , Fluorescent Antibody Technique , Intracellular Signaling Peptides and Proteins , Male , Neurons/metabolism , Orexins , Radioimmunoassay , Rana ridibunda , Rats
7.
J Histochem Cytochem ; 48(11): 1553-64, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11036098

ABSTRACT

Because G-protein-coupled receptors (GPCRs) constitute excellent putative therapeutic targets, functional characterization of orphan GPCRs through identification of their endogenous ligands has great potential for drug discovery. We propose here a novel single cell-based assay for identification of these ligands. This assay involves (a) fluorescent tagging of the GPCR, (b) expression of the tagged receptor in a heterologous expression system, (c) incubation of the transfected cells with fractions purified from tissue extracts, and (d) imaging of ligand-induced receptor internalization by confocal microscopy coupled to digital image quantification. We tested this approach in CHO cells stably expressing the NT1 neurotensin receptor fused to EGFP (enhanced green fluorescent protein), in which neurotensin promoted internalization of the NT1-EGFP receptor in a dose-dependent fashion (EC(50) = 0.98 nM). Similarly, four of 120 consecutive reversed-phase HPLC fractions of frog brain extracts promoted internalization of the NT1-EGFP receptor. The same four fractions selectively contained neurotensin, an endogenous ligand of the NT1 receptor, as detected by radioimmunoassay and inositol phosphate production. The present internalization assay provides a highly specific quantitative cytosensor technique with sensitivity in the nanomolar range that should prove useful for the identification of putative natural and synthetic ligands for GPCRs.


Subject(s)
GTP-Binding Proteins/metabolism , Receptors, Neurotensin/metabolism , Tissue Extracts/metabolism , Animals , Brain/metabolism , CHO Cells , Chromatography, High Pressure Liquid , Cricetinae , Green Fluorescent Proteins , Image Processing, Computer-Assisted , Inositol Phosphates/biosynthesis , Ligands , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Confocal , Neurotensin/pharmacology , Radioimmunoassay , Radioligand Assay , Rana ridibunda , Receptors, Neurotensin/genetics , Recombinant Fusion Proteins/metabolism , Sensitivity and Specificity , Transfection
8.
Endocrinology ; 141(7): 2450-7, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10875245

ABSTRACT

The primary structure of neurotensin has been recently determined for the frog Rana ridibunda (Endocrinology 139: 4140-4146, 1998). In the present study, we have investigated the distribution and biochemical characterization of neurotensin-like immunoreactivity in the frog adrenal gland, using an antiserum directed against the conserved C-terminal region of the peptide. Neurotensin-like immunoreactivity was detected in two populations of nerve fibers: numerous varicose fibers coursing between adrenal cells, and a few processes located in the walls of blood vessels irrigating the gland. Reversed-phase HPLC analysis of frog adrenal gland extracts revealed the existence of a major peak of neurotensin-like immunoreactivity that exhibited the same retention time as synthetic frog neurotensin. The possible involvement of neurotensin in the regulation of steroid secretion was studied in vitro using perifused frog adrenal slices. For concentrations ranging from 10(-10) to 10(-5) M, synthetic frog neurotensin increased corticosterone and aldosterone production in a dose-dependent manner (EC50 = 1.2 x 10(-9) M and 5.8 x 10(-10) M, respectively). Repeated administration of neurotensin induced a reproducible stimulation of steroid output without any tachyphylaxis. Prolonged administration (3 h) of frog neurotensin caused a transient increase in corticosterone and aldosterone secretion followed by a decline of corticosteroid secretion. Neurotensin also produced a significant stimulation of corticosteroid secretion from dispersed frog adrenal cells. This study demonstrates that neurotensin is located in nerve processes innervating the adrenal gland of amphibians. The results also show that synthetic frog neurotensin exerts a direct stimulatory effect on corticosteroid output. Taken together, these data support the view that neurotensin, released by nerve fibers, may act as a local regulator of corticosteroid secretion.


Subject(s)
Adrenal Glands/physiology , Neurotensin/physiology , Rana ridibunda/physiology , Adrenal Glands/drug effects , Adrenal Glands/metabolism , Aldosterone/metabolism , Amino Acid Sequence/genetics , Animals , Corticosterone/metabolism , Immunohistochemistry , Male , Neurotensin/genetics , Neurotensin/metabolism , Neurotensin/pharmacology , Tissue Distribution
9.
J Comp Neurol ; 419(2): 223-32, 2000 Apr 03.
Article in English | MEDLINE | ID: mdl-10723000

ABSTRACT

The distribution of GABAergic neurons was investigated in the diencephalon of the African lungfish, Protopterus annectens, by using specific antibodies directed against glutamic acid decarboxylase (GAD). A dense population of immunoreactive perikarya was observed in the periventricular preoptic nucleus, whereas the caudal hypothalamus and the dorsal thalamus contained only scattered positive cell bodies. Clusters of GAD-positive cells were found in the intermediate lobe of the pituitary. The diencephalon was richly innervated by GAD-immunoreactive fibers that were particularly abundant in the hypothalamus. In the periventricular nucleus, GAD-positive fibers exhibited a radial orientation, and a few neurons extended processes toward the third ventricle. More caudally, a dense bundle of GAD-immunoreactive fibers coursing along the ventral wall of the hypothalamus terminated into the median eminence and the neural lobe of the pituitary. Double-labeling immunocytochemistry revealed that GAD and neuropeptide tyrosine (NPY)-like immunoreactivity was colocalized in a subpopulation of perikarya in the periventricular preoptic nucleus. The proportion of neurons that coexpressed GAD and NPY was higher in the caudal region of the preoptic nucleus. The distribution of GAD-immunoreactive elements in the diencephalon and pituitary of the African lungfish indicates that GABA may act as a hypophysiotropic neurohormone in Dipnoans. The coexistence of GAD and NPY in a subset of neurons of the periventricular preoptic nucleus suggests that GABA and NPY may interact at the synaptic level.


Subject(s)
Diencephalon/metabolism , Fishes/metabolism , Glutamate Decarboxylase/metabolism , Neurons/metabolism , Animals , Diencephalon/cytology , Immunohistochemistry , Neuropeptide Y/metabolism , Preoptic Area/metabolism , Tissue Distribution
10.
Peptides ; 20(11): 1303-10, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10612444

ABSTRACT

In the present study we have investigated the localization and biochemical characteristics of urotensin I (UI)-like and urotensin II (UII)-like immunoreactive peptides in the central nervous system (CNS) and pituitary of the lungfish, Protopterus annectens, by using antisera raised against UI from the white sucker Catostomus commersoni and against UII from the goby Gillichythys mirabilis. UI-like immunoreactive material was found within the melanotrope cells of the intermediate lobe of the pituitary. By contrast, no UI-immunoreactive structures were found in the brain. No UII-like peptides structurally similar to goby UII were found in the brain and pituitary of P. annectens. The UI-immunoreactive material localized in the pituitary was characterized by combining reversed-phase high-performance liquid chromatography (HPLC) analysis and radioimmunological detection. The UI-like immunoreactivity contained in a pituitary extract eluted as a single peak with a retention time intermediate between those of sucker UI and rat corticotropin-releasing factor (CRF). Control tests on adjacent sections of pituitary showed that the UI antiserum cross-reacted with the frog skin peptide sauvagine, but lungfish UI did not co-elute with synthetic sauvagine on HPLC. On the contrary, no cross-reaction was observed between the UI antiserum and CRF or alpha-melanocyte-stimulating hormone (alpha-MSH). The occurrence of an UI-like peptide in the intermediate lobe of the pituitary of P. annectens suggests that, in lungfish, this peptide may act as a classic pituitary hormone or may be involved in the control of melanotrope cell secretion.


Subject(s)
Pituitary Gland/chemistry , Urotensins/chemistry , Amino Acid Sequence , Animals , Chromatography, High Pressure Liquid , Female , Fishes , Immunohistochemistry , Male , Molecular Sequence Data , Radioimmunoassay , Rats , Sequence Homology, Amino Acid , Urotensins/metabolism
11.
J Comp Neurol ; 412(2): 218-28, 1999 Sep 20.
Article in English | MEDLINE | ID: mdl-10441752

ABSTRACT

The biochemical characteristics and the distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) binding sites have been investigated in the brain of the frog Rana ridibunda by using [(125)I]PACAP27 as a radioligand. Membrane-binding studies revealed the existence of high-affinity receptors for frog PACAP38 and PACAP27. In contrast, the [Des-His(1)]PACAP38 analogue had a much lower affinity and vasoactive intestinal polypeptide did not produce any displacement of the binding. Autoradiographic labeling of frozen brain sections revealed that the highest concentrations of PACAP receptors were located in the olfactory bulb, pallium, striatum, habenular nuclei, ventromedial thalamic nucleus, corpus geniculatum, posterior tubercle, dorsal part of the magnocellular preoptic nucleus, tectum, and the molecular cell layer of the cerebellum. Moderate binding was observed in the septum, in most parts of the thalamus, the dorsal hypothalamic nucleus, the median eminence, the ventral nuclei of the tegmentum, the torus semicircularis, and the interpeduncular and isthmi nuclei. The present data provide the first biochemical characterization and anatomic distribution of PACAP binding sites in the brain of a nonmammalian vertebrate species. The widespread distribution of specific PACAP receptors in the frog brain suggests that the peptide does not act solely as a hypophysiotropic factor, but likely fulfills neurotransmitter functions, neuromodulator functions, or both.


Subject(s)
Brain/metabolism , Neuropeptides/metabolism , Rana ridibunda/metabolism , Receptors, Pituitary Hormone/metabolism , Animals , Autoradiography , Brain/anatomy & histology , Cell Membrane/metabolism , Iodine Radioisotopes , Kinetics , Male , Neurotransmitter Agents/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide , Rana ridibunda/anatomy & histology , Rats , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
12.
Ann N Y Acad Sci ; 885: 41-56, 1999 Oct 20.
Article in English | MEDLINE | ID: mdl-10816640

ABSTRACT

In amphibians, alpha-MSH secreted by the pars intermedia of the pituitary plays a pivotal role in the process of skin color adaptation. Reciprocally, the skin of amphibians contains a number of regulatory peptides, some of which have been found to regulate the activity of pituitary melanotrope cells. In particular, the skin of certain species of amphibians harbours considerable amounts of thyrotropin-releasing hormone, a highly potent stimulator of alpha-MSH release. Recently, we have isolated and sequenced from the skin of the frog Phyllomedusa bicolor--a novel peptide named skin peptide tyrosine tyrosine (SPYY), which exhibits 94% similarity with PYY from the frog Rana ridibunda. For concentrations ranging from 5 x 10(-10) to 10(-7) M, SPYY induces a dose-related inhibition of alpha-MSH secretion. At a dose of 10(-7) M, SPYY totally abolished alpha-MSH release. These data strongly suggest the existence of a regulatory loop between the pars intermedia of the pituitary and the skin in amphibians.


Subject(s)
Amphibians/physiology , Melanocytes/physiology , Pituitary Gland/physiology , Skin Physiological Phenomena , alpha-MSH/physiology , Amino Acid Sequence , Animals , Anura , Molecular Sequence Data , Pancreatic Polypeptide/chemistry , Pancreatic Polypeptide/physiology , Sequence Alignment , Thyrotropin-Releasing Hormone/physiology , alpha-MSH/chemistry
13.
C R Seances Soc Biol Fil ; 192(4): 619-38, 1998.
Article in French | MEDLINE | ID: mdl-9842468

ABSTRACT

Neuropeptides play a crucial role in cell communication as neurotransmitters, neuromodulators or neurohormones, and are involved in a number of biological activities including neuroendocrine regulations, control of neurovegetative functions, trophic effects and modulation of the immune response. The number of neuropeptides that have been fully characterized so far is rather limited, as compared to the number of precursor proteins that are actually expressed in nerve cells. Owing to the development of powerful analytical and structural identification methods, and the rapid advance in molecular biology techniques, a number of novel neuropeptides have been characterized during the last decade, in both vertebrates and invertebrates. The aim of the present review is to provide a comprehensive coverage of the different approaches which are currently used to identify novel neuropeptides.


Subject(s)
Neuropeptides/chemistry , Neuropeptides/physiology , Amino Acid Sequence , Animals , Humans , Invertebrates , Molecular Sequence Data , Neurons/physiology , Sequence Alignment , Sequence Homology, Amino Acid , Vertebrates
14.
J Mol Endocrinol ; 21(2): 153-9, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9801458

ABSTRACT

The wood frog Rana sylvatica utilises glucose, derived from hepatic glycogen, as a cryoprotectant in order to survive freezing during winter hibernation, and glycogenolysis is initiated by hormonal and/or neural stimuli. The primary structure of insulin was determined from R. sylvatica and from two species of freeze-intolerant Ranid frogs R. catesbeiana (American bullfrog) and R. ridibunda (European green frog). All three insulins contain a dipeptide (Lys-Pro) extension to the N-terminus of the A-chain. The amino acid sequences of insulins from R. catesbeiana and R. ridibunda differ by only one residue (Asp for Glu at B21) but R. sylvatica insulin differs from R. catesbeiana insulin at A12 (Thr-->Met), A23 (Asn-->Ser), B5 (Tyr-->His) and B13 (Glu-->Asp). The residue at A23 (corresponding to A21 in human insulin) has been otherwise fully conserved during evolution and the residue at B13 has been strongly conserved in tetrapods. Insulin isolated from specimens of R. sylvatica that had been frozen for 24 h and from control animals that had not been frozen had the same structure, showing that freezing did not alter the pathway of post-translational processing of proinsulin. R. sylvatica glucagon was isolated in two molecular forms. Glucagon-29 was identical to R. catesbeiana glucagon-29 and contains only one amino acid substitution (Thr-->Ser) compared with human glucagon. Glucagon-36 represents glucagon-29 extended from its C-terminus by Lys-Arg-Ser-Gly-Gly-Ile-Ser and is identical to R. catesbeiana glucagon-36. We speculate that selective changes in the structure of the insulin molecule may contribute to the anomalous regulation of glycogen phosphorylase in the wood frog.


Subject(s)
Adaptation, Physiological , Freezing , Glucagon/chemistry , Insulin/chemistry , Ranidae/physiology , Amino Acid Sequence , Animals , Chromatography, High Pressure Liquid , Glucagon/isolation & purification , Humans , Insulin/isolation & purification , Male , Molecular Sequence Data , Protein Conformation , Sequence Homology, Amino Acid
15.
Gen Comp Endocrinol ; 112(2): 146-52, 1998 Nov.
Article in English | MEDLINE | ID: mdl-9784297

ABSTRACT

It has been suggested that the amino acid sequence of pancreatic polypeptide (PP) may provide a useful molecular marker with which to study evolutionary relationships between tetrapods but few PP sequences from amphibia are available to test this hypothesis. PPs have been purified from the pancreata of five species belonging to the different orders of amphibians. Their amino acid sequences were established as: APSEPEHPGD10 NASPDELAKY20 YSDLWQYITF30 VGRPRY for the lesser siren, Siren intermedia (Caudata); GPTEPIHPGK10 DATPEELTKY20 YSDLYDYITL30 VGRSRW for the caecilian, Typhlonectes natans (Gymnophiona); and TPSEPQHPGD10 QASPEQLAQY20 YSDLWQYITF30 VTRPRF for the cane toad, Bufo marinus (Anura). The structure of Rana sylvatica PP is the same as that of Rana catesbeiana PP whereas PP from the green frog Rana ridibunda contains one substitution (His6 --> Gln). The data provide further support for the conclusion that the amino acid sequence of PP has been poorly conserved during evolution with only 17 residues invariant among the eight species of amphibia yet studied and only 8 residues (Pro5, Pro8, Gly9, Ala12, Leu24, Tyr27, Arg33, and Arg35) invariant among all tetrapods. A maximum parsimony analysis based upon the amino acid sequence of PP and using the sequence of frog PYY as outgroup to polarize the in-group taxa generates a consensus phylogenetic tree in which the Amniota and Amphibia form two distinct clades. However, such a tree does not permit valid conclusions to be drawn regarding branching order within the Amphibia.


Subject(s)
Amphibians/genetics , Genetic Variation , Pancreatic Polypeptide/chemistry , Amino Acid Sequence , Animals , Biomarkers , Chromatography, High Pressure Liquid , Consensus Sequence , Evolution, Molecular , Humans , Molecular Sequence Data , Pancreatic Polypeptide/genetics , Pancreatic Polypeptide/isolation & purification , Radioimmunoassay
16.
Cell Tissue Res ; 293(2): 235-43, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9662646

ABSTRACT

Two molecular variants of gonadotropin-releasing hormone (GnRH) have been previously characterized in the brain of amphibians, i.e., mammalian GnRH (mGnRH) and chicken GnRH-II (cGnRH-II). The aim of the present study was to identify the molecular forms of gonadotropin-releasing hormone and to localize gonadotropin-releasing hormone-containing elements in the spinal cord of the frog Rana ridibunda using highly specific antisera against mGnRH and cGnRH-II. High-performance liquid chromatography (HPLC) analysis combined with radioimmunoassay (RIA) detection revealed that frog spinal cord extracts contained both mGnRH and cGnRH-II. Immunohistochemical labeling revealed that the frog spinal cord was devoid of GnRH-containing cell bodies. In contrast, numerous GnRH-immunoreactive fibers were observed throughout the entire length of the cord. mGnRH immunoreactivity was only detected in the rostral region of the cord and consisted of varicose processes located in the vicinity of the central canal. cGnRH-II-positive fibers were found throughout the spinal cord, the density of immunoreactive processes decreasing gradually toward the caudal region. Two main cGnRH-II-positive fiber tracts with a rostrocaudal orientation were observed: a relatively dense fiber bundle surrounding the central canal, and a more diffuse plexus in the white matter. In addition, short, varicose cGnRH-II-positive processes with a radial orientation were present throughout the gray matter. These fibers were particularly abundant ventromedially and formed a diffuse network that ramified laterally to end in the vicinity of motoneurons. Taken together, these data indicate that the frog spinal cord, like the frog brain, contains two forms of GnRH. The presence of numerous cGnRH-II-immunoreactive fibers in the ventral horn suggests that cGnRH-II may influence the activity of a subpopulation of motoneurons.


Subject(s)
Gonadotropin-Releasing Hormone/metabolism , Spinal Cord/metabolism , Animals , Fluorescent Antibody Technique, Indirect , Male , Peptides/metabolism , Rana ridibunda
17.
J Comp Neurol ; 396(3): 275-87, 1998 Jul 06.
Article in English | MEDLINE | ID: mdl-9624584

ABSTRACT

The distribution of various opioid peptides derived from proenkephalin A and B was studied in the brain of the African lungfish Protopterus annectens by using a series of antibodies directed against mammalian opioid peptides. The results show that both Metenkephalin- and Leu-enkephalin-immunoreactive peptides are present in the lungfish brain. In contrast, enkephalin forms similar to Met-enkephalin-Arg-Phe, or Met-enkephalin-Arg-Gly-Leu, as well as mammalian alpha-neoendrophin, dynorphin A (1-8), dynorphin A (1-13), or dynorphin A (1-17) were not detected. In all major subdivisions of the brain, the overwhelming majority of Met-enkephalin- and Leu-enkephalin-immunoreactive cells were distinct. In particular, cell bodies reacting only with Leu-enkephalin antibodies were detected in the medial subpallium of the telencephalon, the griseum centrale, the reticular formation, the nucleus of the solitary tract, and the visceral sensory area of the rhombencephalon. Cell bodies reacting only with Met-enkephalin antibodies were found in the lateral subpallium of the telencephalon, the caudal hypothalamus, and the tegmentum of the mesencephalon. The preoptic periventricular nucleus of the hypothalamus exhibited a high density of Metenkephalin-immunoreactive neurons and only a few Leu-enkephalin-immunoreactive neurons. The distribution of Met-enkephalin- and Leu-enkephalin-immunoreactive cell bodies and fibers in the lungfish brain showed similarities to the distribution of proenkephalin A-derived peptides described previously in the brain of land vertebrates. The presence of Met-enkephalin- and Leu-enkephalin-like peptides in distinct regions, together with the absence of dynorphin-related peptides, suggests that, in the lungfish, Met-enkephalin and Leu-enkephalin may originate from distinct precursors.


Subject(s)
Brain/cytology , Enkephalin, Leucine/analysis , Enkephalin, Methionine/analysis , Fishes/anatomy & histology , Neurons/cytology , Animals , Immunohistochemistry/methods , Nerve Fibers/ultrastructure , Organ Specificity , Vertebrates
SELECTION OF CITATIONS
SEARCH DETAIL
...