Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
AIDS Res Hum Retroviruses ; 23(1): 123-34, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17263642

ABSTRACT

Two major interferon (IFN)-mediated antiviral defense enzymes are double-stranded (ds)RNA-dependent 2',5'-oligoadenylate (2-5A) synthetase (2-5OAS) and p68 kinase (PKR). When activated by dsRNA, 2-5OAS synthesizes 2-5A, which binds to and activates RNase L. Activated RNase L hydrolyzes single-stranded viral RNA, thereby inhibiting viral protein synthesis. HIV-1 inhibits the IFN-mediated intracellular antiviral pathways. We have reported the synthesis and characterization of a nuclease-resistant 2-5A agonist (2-5A(N6B)) that overcomes the HIV-1 induced blockades by restoring the 2-5OAS/RNase L antiviral pathway (Homan JW, et al., J Acquir Immune Defic Syndr 2002;30:9-20). The objective of this study was to test the effect of 2-5A(N6B) on chronically infected CD4(+) T lymphocytes and CD14(+) monocytes derived from HIV-1-seropositive individuals. Wild-type HIV-1 replication was effectively inhibited by 2-5A(N6B) in CD4(+) T lymphocytes and CD14(+) monocytes purified from HIV-1 seropositive individuals (n = 18) compared to untreated cells. We also assessed the cytotoxicity of 2-5A(N6B) and report that 2-5A(N6B) exerts its anti-HIV-1 activity with no evidence of cytotoxicity (IC(90) > 100,000 nM). Furthermore, 2-5A(N6B) did not alter the cellular RNA profile, affect CCR5 or CXCR4 coreceptor expression, or activate caspase-dependent apoptosis. Evidence is also provided to show that 2-5A(N6B), and naturally occurring 2-5A(4), act as ligands to activate human Toll-like receptor 4. These results indicate that the 2-5A agonist 2-5A(N6B) has the potential to enhance host cell innate and acquired immune defense mechanisms against HIV-1 infection.


Subject(s)
Adenine Nucleotides/pharmacology , Anti-HIV Agents/pharmacology , CD4-Positive T-Lymphocytes/virology , HIV Infections/metabolism , HIV-1/drug effects , Lipopolysaccharide Receptors , Oligoribonucleotides/pharmacology , Adenine Nucleotides/agonists , Adenine Nucleotides/chemical synthesis , Adult , Aged , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Female , Flow Cytometry , HIV Infections/drug therapy , HIV Seropositivity , HIV-1/physiology , Humans , Immunologic Factors/pharmacology , Male , Middle Aged , Monocytes/cytology , Monocytes/immunology , Oligoribonucleotides/agonists , Oligoribonucleotides/chemical synthesis , Reverse Transcriptase Polymerase Chain Reaction , Toll-Like Receptor 4/metabolism , Virus Replication/drug effects
2.
FASEB J ; 20(12): 2130-2, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16935936

ABSTRACT

Pterin-4a-carbinolamine dehydratase (PCD) is an essential component of the phenylalanine hydroxylase (PAH) system, catalyzing the regeneration of the essential cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin [6(R)BH4]. Mutations in PCD or its deactivation by hydrogen peroxide result in the generation of 7(R,S)BH4, which is a potent inhibitor of PAH that has been implicated in primapterinuria, a variant form of phenylketonuria, and in the skin depigmentation disorder vitiligo. We have synthesized and separated the 7(R) and 7(S) diastereomers confirming their structure by NMR. Both 7(R)- and 7(S)BH4 function as poor cofactors for PAH, whereas only 7(S)BH4 acts as a potent competitive inhibitor vs. 6(R)BH4 (Ki=2.3-4.9 microM). Kinetic and binding studies, as well as characterization of the pterin-enzyme complexes by fluorescence spectroscopy, revealed that the inhibitory effects of 7(R,S)BH4 on PAH are in fact specifically based on 7(S)BH4 binding. The molecular dynamics simulated structures of the pterin-PAH complexes indicate that 7(S)BH4 inhibition is due to its interaction with the polar region at the pterin binding site close to Ser-251, whereas its low efficiency as cofactor is related to a suboptimal positioning toward the catalytic iron. 7(S)BH4 is not an inhibitor for tyrosine hydroxylase (TH) in the physiological range, presumably due to the replacement of Ser-251 by the corresponding Ala297. Taken together, our results identified structural determinants for the specific regulation of PAH and TH by 7(S)BH4, which in turn aid in the understanding of primapterinuria and acute vitiligo.


Subject(s)
Biopterins/analogs & derivatives , Phenylalanine Hydroxylase/antagonists & inhibitors , Vitiligo/etiology , Binding Sites , Binding, Competitive , Biopterins/chemical synthesis , Biopterins/metabolism , Biopterins/pharmacology , Biopterins/urine , Computer Simulation , Humans , Kinetics , Magnetic Resonance Spectroscopy , Phenylalanine Hydroxylase/metabolism , Protein Binding , Pterins/metabolism , Spectrometry, Fluorescence , Stereoisomerism , Tyrosine 3-Monooxygenase/metabolism
3.
J Acquir Immune Defic Syndr ; 30(1): 9-20, 2002 May 01.
Article in English | MEDLINE | ID: mdl-12048358

ABSTRACT

Opioids potentiate HIV-1 infection in vitro at least partly by suppressing immunoresponsive processes in human lymphocytes and monocytes. For example, it appears that morphine inhibits the interferon (IFN)-alpha, -beta, and -gamma-mediated natural antiviral defense pathways in human peripheral blood mononuclear cells (PBMC). In this study, we show that restoration of a key component of the antiviral pathway reverses morphine-potentiated HIV-1 infection of human PBMC. The data show that HIV-1 replication is potentiated and RNase L activity is inhibited after morphine administration. Because HIV-1 inhibits the antiviral pathway at the level of 2',5'-oligoadenylate (2-5A) synthetase and p68 kinase, antiviral enzymes that require double-stranded RNA, we overcame this blockade by the addition of the nuclease-resistant, nontoxic 2-5A agonist, 2-5A(N6B), to PBMC in culture. Addition of 2-5A(N6B), but not zidovudine or saquinavir, to morphine-treated PBMC completely reversed the morphine-induced potentiation of HIV-1 infection. Further, 2-5A(N6B) significantly enhanced expression of both IFN-alpha and IFN-gamma. Also, increased expression of IFN-gamma was associated with a significant increase in expression of RANTES and monocyte chemotactic protein (MCP)-1, chemokines that may inhibit HIV-1 infection by blocking viral attachment to CCR2 and CCR5 co-receptors. Our results suggest that reactivation of the antiviral pathway by 2-5A agonists may be useful to inhibit opioid-potentiated HIV-1 replication.


Subject(s)
Adenine Nucleotides/pharmacology , Antiviral Agents/pharmacology , HIV-1/drug effects , Leukocytes, Mononuclear/virology , Morphine/pharmacology , Narcotics/pharmacology , Oligoribonucleotides/pharmacology , Virus Replication/drug effects , Adenine Nucleotides/agonists , Adenine Nucleotides/chemical synthesis , Cells, Cultured , Chemokine CCL2/analysis , Chemokine CCL2/biosynthesis , Chemokine CCL5/analysis , Chemokine CCL5/biosynthesis , Endoribonucleases/biosynthesis , Endoribonucleases/metabolism , Enzyme Activation/drug effects , HIV Protease Inhibitors/pharmacology , HIV-1/physiology , Humans , Interferon-alpha/analysis , Interferon-alpha/biosynthesis , Interferon-gamma/analysis , Interferon-gamma/biosynthesis , Leukocytes, Mononuclear/drug effects , Morphine/antagonists & inhibitors , Oligoribonucleotides/agonists , Oligoribonucleotides/chemical synthesis , Protein Synthesis Inhibitors/agonists , Reverse Transcriptase Inhibitors/pharmacology , Saquinavir/pharmacology , Zidovudine/pharmacology
4.
J Interferon Cytokine Res ; 22(4): 443-56, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12034027

ABSTRACT

A 2',5'-oligoadenylate (2-5A)-dependent 37-kDa form of RNase L has been reported in extracts of peripheral blood mononuclear cells (PBMC) from individuals with chronic fatigue syndrome (CFS). In the current study, analytic gel permeation FPLC, azido photoaffinity labeling, two-dimensional (2-D) gel electrophoresis, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) have been used to examine the biochemical relationship between the 80-kDa RNase L in healthy control PBMC and the 37-kDa RNase L in PBMC from individuals with CFS. Like the 80-kDa RNase L, the 37-kDa RNase L is present as a catalytically inactive heterodimer complex with the RNase L inhibitor (RLI). Formation of a 37-kDa RNase L-RLI complex indicates that the 37-kDa RNase L is structurally similar to the 80-kDa RNase L at the N-terminus, which contains the 2-5A binding domain. The enzymatically active monomer form of 37-kDa RNase L resolved by 2-D gel electrophoresis has a pI of 6.1. RT-PCR and Southern blot analyses demonstrated that the 37-kDa RNase L is not formed by alternative splicing. In-gel tryptic digestion of the 37-kDa RNase L that was excised from 2-D gels and subsequent MALDI-MS analysis identified three peptide masses that are identical to three predicted peptide masses in the 80-kDa RNase L. The electrophoretic mobility of 2-5A azido photolabeled/immunoprecipitated 37-kDa RNase L was the same under reducing and nonreducing conditions. The results presented show that the 37-kDa form of RNase L in PBMC shares structural and functional features with the native 80-kDa RNase L, in particular in the 2-5A binding and catalytic domains.


Subject(s)
Adenosine/analogs & derivatives , Endoribonucleases/chemistry , Endoribonucleases/physiology , Fatigue Syndrome, Chronic/enzymology , Adenosine/chemistry , Affinity Labels/chemistry , Azides/chemistry , Cell Extracts/analysis , Cells, Cultured , Chromatography, Gel , Disulfides/metabolism , Electrophoresis, Gel, Two-Dimensional , Endoribonucleases/genetics , Humans , K562 Cells , Leukocytes, Mononuclear/enzymology , Molecular Weight , RNA, Messenger/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...