Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(5): 112499, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37178122

ABSTRACT

Physical activity is associated with beneficial adaptations in human and rodent metabolism. We studied over 50 complex traits before and after exercise intervention in middle-aged men and a panel of 100 diverse strains of female mice. Candidate gene analyses in three brain regions, muscle, liver, heart, and adipose tissue of mice indicate genetic drivers of clinically relevant traits, including volitional exercise volume, muscle metabolism, adiposity, and hepatic lipids. Although ∼33% of genes differentially expressed in skeletal muscle following the exercise intervention are similar in mice and humans independent of BMI, responsiveness of adipose tissue to exercise-stimulated weight loss appears controlled by species and underlying genotype. We leveraged genetic diversity to generate prediction models of metabolic trait responsiveness to volitional activity offering a framework for advancing personalized exercise prescription. The human and mouse data are publicly available via a user-friendly Web-based application to enhance data mining and hypothesis development.


Subject(s)
Adaptation, Physiological , Transcriptome , Male , Middle Aged , Humans , Female , Mice , Animals , Transcriptome/genetics , Obesity/metabolism , Acclimatization , Adipose Tissue/metabolism , Muscle, Skeletal/metabolism
2.
medRxiv ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38168321

ABSTRACT

Objective: Epidemiological and genetic studies have reported inverse associations between circulating glycine levels and risk of coronary artery disease (CAD). However, these findings have not been consistently observed in all studies. We sought to evaluate the causal relationship between circulating glycine levels and atherosclerosis using large-scale genetic analyses in humans and dietary supplementation experiments in mice. Methods: Serum glycine levels were evaluated for association with prevalent and incident CAD in the UK Biobank. A multi-ancestry genome-wide association study (GWAS) meta-analysis was carried out to identify genetic determinants for circulating glycine levels, which were then used to evaluate the causal relationship between glycine and risk of CAD by Mendelian randomization (MR). A glycine feeding study was carried out with atherosclerosis-prone apolipoprotein E deficient (ApoE-/-) mice to determine the effects of increased circulating glycine levels on amino acid metabolism, metabolic traits, and aortic lesion formation. Results: Among 105,718 subjects from the UK Biobank, elevated serum glycine levels were associated with significantly reduced risk of prevalent CAD (Quintile 5 vs. Quintile 1 OR=0.76, 95% CI 0.67-0.87; P<0.0001) and incident CAD (Quintile 5 vs. Quintile 1 HR=0.70, 95% CI 0.65-0.77; P<0.0001) in models adjusted for age, sex, ethnicity, anti-hypertensive and lipid-lowering medications, blood pressure, kidney function, and diabetes. A meta-analysis of 13 GWAS datasets (total n=230,947) identified 61 loci for circulating glycine levels, of which 26 were novel. MR analyses provided modest evidence that genetically elevated glycine levels were causally associated with reduced systolic blood pressure and risk of type 2 diabetes, but did provide evidence for an association with risk of CAD. Furthermore, glycine-supplementation in ApoE-/- mice did not alter cardiometabolic traits, inflammatory biomarkers, or development of atherosclerotic lesions. Conclusions: Circulating glycine levels were inversely associated with risk of prevalent and incident CAD in a large population-based cohort. While substantially expanding the genetic architecture of circulating glycine levels, MR analyses and in vivo feeding studies in humans and mice, respectively, did not provide evidence that the clinical association of this amino acid with CAD represents a causal relationship, despite being associated with two correlated risk factors.

3.
Science ; 377(6613): 1399-1406, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36137043

ABSTRACT

Tissue-tissue communication by endocrine factors is a vital mechanism for physiologic homeostasis. A systems genetics analysis of transcriptomic and functional data from a cohort of diverse, inbred strains of mice predicted that coagulation factor XI (FXI), a liver-derived protein, protects against diastolic dysfunction, a key trait of heart failure with preserved ejection fraction. This was confirmed using gain- and loss-of-function studies, and FXI was found to activate the bone morphogenetic protein (BMP)-SMAD1/5 pathway in the heart. The proteolytic activity of FXI is required for the cleavage and activation of extracellular matrix-associated BMP7 in the heart, thus inhibiting genes involved in inflammation and fibrosis. Our results reveal a protective role of FXI in heart injury that is distinct from its role in coagulation.


Subject(s)
Bone Morphogenetic Protein 7 , Factor XI , Heart Failure , Liver , Myocardium , Animals , Bone Morphogenetic Protein 7/metabolism , Factor XI/genetics , Factor XI/metabolism , Fibrosis , Heart Failure/genetics , Heart Failure/metabolism , Humans , Inflammation/genetics , Liver/enzymology , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Proteolysis
4.
Nat Commun ; 13(1): 3850, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35787630

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) exhibits a sex bias, being more common in women than men, and we hypothesize that mitochondrial sex differences might underlie this bias. As part of genetic studies of heart failure in mice, we observe that heart mitochondrial DNA levels and function tend to be reduced in females as compared to males. We also observe that expression of genes encoding mitochondrial proteins are higher in males than females in human cohorts. We test our hypothesis in a panel of genetically diverse inbred strains of mice, termed the Hybrid Mouse Diversity Panel (HMDP). Indeed, we find that mitochondrial gene expression is highly correlated with diastolic function, a key trait in HFpEF. Consistent with this, studies of a "two-hit" mouse model of HFpEF confirm that mitochondrial function differs between sexes and is strongly associated with a number of HFpEF traits. By integrating data from human heart failure and the mouse HMDP cohort, we identify the mitochondrial gene Acsl6 as a genetic determinant of diastolic function. We validate its role in HFpEF using adenoviral over-expression in the heart. We conclude that sex differences in mitochondrial function underlie, in part, the sex bias in diastolic function.


Subject(s)
Heart Failure , Animals , Coenzyme A Ligases , Diastole/genetics , Female , Heart Failure/metabolism , Humans , Male , Mice , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Sex Characteristics , Stroke Volume/genetics
5.
Sci Rep ; 11(1): 16409, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34385484

ABSTRACT

We recently showed that NOTUM, a liver-secreted Wnt inhibitor, can acutely promote browning of white adipose. We now report studies of chronic overexpression of NOTUM in liver indicating that it protects against diet-induced obesity and improves glucose homeostasis in mice. Adeno-associated virus (AAV) vectors were used to overexpress GFP or mouse Notum in the livers of male C57BL/6J mice and the mice were fed an obesifying diet. After 14 weeks of high fat, high sucrose diet feeding, the AAV-Notum mice exhibited decreased obesity and improved glucose tolerance compared to the AAV-GFP mice. Gene expression and immunoblotting analysis of the inguinal fat and brown fat revealed increased expression of beige/brown adipocyte markers in the AAV-Notum group, suggesting enhanced thermogenic capacity by NOTUM. A ß3 adrenergic receptor agonist-stimulated lipolysis test suggested increased lipolysis capacity by NOTUM. The levels of collagen and C-C motif chemokine ligand 2 (CCL2) in the epididymal white adipose tissue of the AAV-Notum mice were significantly reduced, suggesting decreased fibrosis and inflammation, respectively. RNA sequencing analysis of inguinal white adipose of 4-week chow diet-fed mice revealed a highly significant enrichment of extracellular matrix (ECM) functional cluster among the down-regulated genes in the AAV-Notum group, suggesting a potential mechanism contributing to improved glucose homeostasis. Our in vitro studies demonstrated that recombinant human NOTUM protein blocked the inhibitory effects of WNT3A on brown adipocyte differentiation. Furthermore, NOTUM attenuated WNT3A's effects on upregulation of TGF-ß signaling and its downstream targets. Overall, our data suggest that NOTUM modulates adipose tissue function by promoting thermogenic capacity and inhibiting fibrosis through inhibition of Wnt signaling.


Subject(s)
Diet, High-Fat/adverse effects , Esterases/metabolism , Obesity/metabolism , Thermogenesis/physiology , Adipocytes, Beige/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Energy Metabolism/physiology , Glucose Intolerance/metabolism , Lipolysis/physiology , Male , Mice , Mice, Inbred C57BL
6.
Sci Rep ; 11(1): 518, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436815

ABSTRACT

Patients with chronic kidney disease (CKD) have elevated circulating levels of trimethylamine N-oxide (TMAO), a metabolite derived from gut microbes and associated with cardiovascular diseases. High circulating levels of TMAO and its dietary precursor, choline, predict increased risk for development of CKD in apparently healthy subjects, and studies in mice fed TMAO or choline suggest that TMAO can contribute to kidney impairment and renal fibrosis. Here we examined the interactions between TMAO, kidney disease, and cardiovascular disease in mouse models. We observed that while female hyperlipidemic apoE KO mice fed a 0.2% adenine diet for 14 weeks developed CKD with elevated plasma levels of TMAO, provision of a non-lethal inhibitor of gut microbial trimethylamine (TMA) production, iodomethylcholine (IMC), significantly reduced multiple markers of renal injury (plasma creatinine, cystatin C, FGF23, and TMAO), reduced histopathologic evidence of fibrosis, and markedly attenuated development of microalbuminuria. In addition, while the adenine-induced CKD model significantly increased heart weight, a surrogate marker for myocardial hypertrophy, this was largely prevented by IMC supplementation. Surprisingly, adenine feeding did not increase atherosclerosis and significantly decreased the expression of inflammatory genes in the aorta compared to the control groups, effects unrelated to TMAO levels. Our data demonstrate that inhibition of TMAO production attenuated CKD development and cardiac hypertrophy in mice, suggesting that TMAO reduction may be a novel strategy in treating CKD and its cardiovascular disease complications.


Subject(s)
Gastrointestinal Microbiome/physiology , Methylamines/adverse effects , Methylamines/metabolism , Renal Insufficiency, Chronic/etiology , Adenine/administration & dosage , Adenine/adverse effects , Albuminuria/etiology , Animals , Cardiomegaly/etiology , Cardiomegaly/prevention & control , Choline/administration & dosage , Choline/adverse effects , Choline/analogs & derivatives , Choline/pharmacology , Disease Models, Animal , Female , Fibroblast Growth Factor-23 , Fibrosis , Kidney/pathology , Methylamines/administration & dosage , Mice , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/prevention & control
7.
Lipids ; 56(3): 269-278, 2021 05.
Article in English | MEDLINE | ID: mdl-33336429

ABSTRACT

A variety of rodents have been used as experimental animals in metabolic studies of plasma lipids and lipoproteins. These studies have included understanding the functional role of apolipoprotein A-I, the major protein on the surface of HDL. Reviewing the genomic database for entries for rodent apoA-I genes, it was discovered that the naked mole-rat (Heterocephalus glaber) gene encoded a protein with a cysteine at residue 28. Previously, two cases have been reported in which human heterozygotes had apoA-I with cysteine at residues 173 (apoA-I Milano) or at 151 (apoA-I Paris). Interestingly, both groups, in spite of having low levels of HDL and moderately elevated plasma triacylglycerols, had no evidence of cardiovascular disease. Moreover, the presence of the cysteine enabled the apoA-I to form both homodimers and heterodimers. Prior to this report, no other mammalian apoA-I has been found with a cysteine in its sequence. In addition, the encoded naked mole-rat protein had different amino acids at sites that were conserved in all other mammals. These differences resulted in naked mole-rat apoA-I having an unexpected neutral pI value, whereas other mammalian apoA-I have negative pI values. To verify these sequence differences and to determine if the N-terminal location of C28 precluded dimer formation, we conducted mass spectrometry analyses of apoA-I and other proteins associated with HDL. Consistent with the genomic data, our analyses confirmed the presence of C28 and the formation of a homodimer. Analysis of plasma lipids surprisingly revealed a profile similar to the human heterozygotes.


Subject(s)
Apolipoprotein A-I/genetics , Apolipoprotein A-I/metabolism , Lipoproteins, HDL/metabolism , Animals , Apolipoprotein A-I/chemistry , Chromatography, Liquid , Cysteine/metabolism , Databases, Protein , Mass Spectrometry , Models, Molecular , Protein Binding , Protein Multimerization , Rats , Species Specificity
8.
Arterioscler Thromb Vasc Biol ; 41(1): 220-233, 2021 01.
Article in English | MEDLINE | ID: mdl-33086870

ABSTRACT

OBJECTIVE: Previous studies have shown that deficiency of M-CSF (macrophage colony-stimulating factor; or CSF1 [colony stimulating factor 1]) dramatically reduces atherosclerosis in hyperlipidemic mice. We characterize the underlying mechanism and investigate the relevant sources of CSF1 in lesions. Approach and Results: We quantitatively assessed the effects of CSF1 deficiency on macrophage proliferation and apoptosis in atherosclerotic lesions. Staining of aortic lesions with markers of proliferation, Ki-67 and bromodeoxyuridine, revealed around 40% reduction in CSF1 heterozygous (Csf1+/-) as compared with WT (wild type; Csf1+/+) mice. Similarly, staining with a marker of apoptosis, activated caspase-3, revealed a 3-fold increase in apoptotic cells in Csf1+/- mice. Next, we determined the cellular sources of CSF1 contributing to lesion development. Cell-specific deletions of Csf1 in smooth muscle cells using SM22α-Cre (smooth muscle protein 22-alpha-Cre) reduced lesions by about 40%, and in endothelial cells, deletions with Cdh5-Cre (VE-cadherin-Cre) reduced lesions by about 30%. Macrophage-specific deletion with LysM-Cre (lysozyme M-Cre), on the other hand, did not significantly reduce lesions size. Transplantation of Csf1 null (Csf1-/-) mice bone marrow into Csf1+/+ mice reduced lesions by about 35%, suggesting that CSF1 from hematopoietic cells other than macrophages contributes to atherosclerosis. None of the cell-specific knockouts affected circulating CSF1 levels, and only the smooth muscle cell deletions had any effect on the percentage monocytes in the circulation. Also, Csf1+/- mice did not exhibit significant differences in Ly6Chigh/Ly6Clow monocytes as compared with Csf1+/+. CONCLUSIONS: CSF1 contributes to both macrophage proliferation and survival in lesions. Local CSF1 production by smooth muscle cell and endothelial cell rather than circulating CSF1 is the primary driver of macrophage expansion in atherosclerosis.


Subject(s)
Apoptosis , Atherosclerosis/metabolism , Cell Proliferation , Endothelial Cells/metabolism , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Aorta/metabolism , Aorta/pathology , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Cadherins/genetics , Cadherins/metabolism , Disease Models, Animal , Endothelial Cells/pathology , Female , Macrophage Colony-Stimulating Factor/deficiency , Macrophage Colony-Stimulating Factor/genetics , Macrophages/pathology , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Receptors, LDL/genetics , Receptors, LDL/metabolism , Signal Transduction
9.
Aging Cell ; 19(11): e13166, 2020 11.
Article in English | MEDLINE | ID: mdl-33049094

ABSTRACT

Mitochondrial dysfunction is frequently associated with impairment in metabolic homeostasis and insulin action, and is thought to underlie cellular aging. However, it is unclear whether mitochondrial dysfunction is a cause or consequence of insulin resistance in humans. To determine the impact of intrinsic mitochondrial dysfunction on metabolism and insulin action, we performed comprehensive metabolic phenotyping of the polymerase gamma (PolG) D257A "mutator" mouse, a model known to accumulate supraphysiological mitochondrial DNA (mtDNA) point mutations. We utilized the heterozygous PolG mutator mouse (PolG+/mut ) because it accumulates mtDNA point mutations ~ 500-fold > wild-type mice (WT), but fails to develop an overt progeria phenotype, unlike PolGmut/mut animals. To determine whether mtDNA point mutations induce metabolic dysfunction, we examined male PolG+/mut mice at 6 and 12 months of age during normal chow feeding, after 24-hr starvation, and following high-fat diet (HFD) feeding. No marked differences were observed in glucose homeostasis, adiposity, protein/gene markers of metabolism, or oxygen consumption in muscle between WT and PolG+/mut mice during any of the conditions or ages studied. However, proteomic analyses performed on isolated mitochondria from 12-month-old PolG+/mut mouse muscle revealed alterations in the expression of mitochondrial ribosomal proteins, electron transport chain components, and oxidative stress-related factors compared with WT. These findings suggest that mtDNA point mutations at levels observed in mammalian aging are insufficient to disrupt metabolic homeostasis and insulin action in male mice.


Subject(s)
DNA, Mitochondrial/genetics , Mitochondria, Liver/metabolism , Mitochondria, Muscle/metabolism , Point Mutation , Animals , Diet, High-Fat , Disease Models, Animal , Homeostasis , Mice , Mitochondria, Liver/genetics , Mitochondria, Muscle/genetics , Nutrients , Starvation/genetics , Starvation/metabolism
10.
Cell Syst ; 6(1): 103-115.e7, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29361464

ABSTRACT

The etiology of non-alcoholic fatty liver disease (NAFLD), the most common form of chronic liver disease, is poorly understood. To understand the causal mechanisms underlying NAFLD, we conducted a multi-omics, multi-tissue integrative study using the Hybrid Mouse Diversity Panel, consisting of ∼100 strains of mice with various degrees of NAFLD. We identified both tissue-specific biological processes and processes that were shared between adipose and liver tissues. We then used gene network modeling to predict candidate regulatory genes of these NAFLD processes, including Fasn, Thrsp, Pklr, and Chchd6. In vivo knockdown experiments of the candidate genes improved both steatosis and insulin resistance. Further in vitro testing demonstrated that downregulation of both Pklr and Chchd6 lowered mitochondrial respiration and led to a shift toward glycolytic metabolism, thus highlighting mitochondria dysfunction as a key mechanistic driver of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Animals , Databases, Genetic , Gene Expression Profiling/methods , Gene Regulatory Networks/genetics , Genomics/methods , HEK293 Cells , Humans , Insulin Resistance , Lipid Metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains/genetics , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Polymorphism, Single Nucleotide/genetics , Proteomics/methods , Ribosomal Proteins/genetics , Transcriptome
11.
Elife ; 4: e05607, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26067236

ABSTRACT

To identify genetic and environmental factors contributing to the pathogenesis of non-alcoholic fatty liver disease, we examined liver steatosis and related clinical and molecular traits in more than 100 unique inbred mouse strains, which were fed a diet rich in fat and carbohydrates. A >30-fold variation in hepatic TG accumulation was observed among the strains. Genome-wide association studies revealed three loci associated with hepatic TG accumulation. Utilizing transcriptomic data from the liver and adipose tissue, we identified several high-confidence candidate genes for hepatic steatosis, including Gde1, a glycerophosphodiester phosphodiesterase not previously implicated in triglyceride metabolism. We confirmed the role of Gde1 by in vivo hepatic over-expression and shRNA knockdown studies. We hypothesize that Gde1 expression increases TG production by contributing to the production of glycerol-3-phosphate. Our multi-level data, including transcript levels, metabolite levels, and gut microbiota composition, provide a framework for understanding genetic and environmental interactions underlying hepatic steatosis.


Subject(s)
Genome-Wide Association Study , Non-alcoholic Fatty Liver Disease/veterinary , Phosphoric Diester Hydrolases/genetics , Rodent Diseases/genetics , Adipose Tissue/pathology , Animals , Gene Expression , Gene Expression Profiling , Gene Knockdown Techniques , Liver/pathology , Mice, Inbred Strains , Non-alcoholic Fatty Liver Disease/genetics , Triglycerides/metabolism
12.
J Lipid Res ; 56(1): 22-37, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25378658

ABSTRACT

We performed silencing and overexpression studies of flavin containing monooxygenase (FMO) 3 in hyperlipidemic mouse models to examine its effects on trimethylamine N-oxide (TMAO) levels and atherosclerosis. Knockdown of hepatic FMO3 in LDL receptor knockout mice using an antisense oligonucleotide resulted in decreased circulating TMAO levels and atherosclerosis. Surprisingly, we also observed significant decreases in hepatic lipids and in levels of plasma lipids, ketone bodies, glucose, and insulin. FMO3 overexpression in transgenic mice, on the other hand, increased hepatic and plasma lipids. Global gene expression analyses suggested that these effects of FMO3 on lipogenesis and gluconeogenesis may be mediated through the PPARα and Kruppel-like factor 15 pathways. In vivo and in vitro results were consistent with the concept that the effects were mediated directly by FMO3 rather than trimethylamine/TMAO; in particular, overexpression of FMO3 in the human hepatoma cell line, Hep3B, resulted in significantly increased glucose secretion and lipogenesis. Our results indicate a major role for FMO3 in modulating glucose and lipid homeostasis in vivo, and they suggest that pharmacologic inhibition of FMO3 to reduce TMAO levels would be confounded by metabolic interactions.


Subject(s)
Atherosclerosis/enzymology , Glucose/metabolism , Lipid Metabolism , Oxygenases/metabolism , Animals , Bile Acids and Salts/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Diet, Western , Feces/chemistry , Female , Gene Expression Regulation, Enzymologic , Gene Knockdown Techniques , Gene Knockout Techniques , Glucose/biosynthesis , Homeostasis , Humans , Insulin/blood , Intestinal Mucosa/metabolism , Kruppel-Like Transcription Factors , Lipogenesis , Lipoproteins/blood , Liver/metabolism , Methylamines/metabolism , Mice , Oxygenases/deficiency , Oxygenases/genetics , PPAR alpha/metabolism , Receptors, LDL/deficiency , Receptors, LDL/genetics , Transcription Factors/metabolism
13.
Circulation ; 126(15): 1896-906, 2012 Oct 09.
Article in English | MEDLINE | ID: mdl-22952318

ABSTRACT

BACKGROUND: The human 9p21.3 chromosome locus has been shown to be an independent risk factor for atherosclerosis in multiple large-scale genome-wide association studies, but the underlying mechanism remains unknown. We set out to investigate the potential role of the 9p21.3 locus neighboring genes, including Mtap, the 2 isoforms of Cdkn2a, p16Ink4a and p19Arf, and Cdkn2b, in atherosclerosis using knockout mice models. METHODS AND RESULTS: Gene-targeted mice for neighboring genes, including Mtap, Cdkn2a, p19Arf, and Cdkn2b, were each bred to mice carrying the human APO*E3 Leiden transgene that sensitizes the mice for atherosclerotic lesions through elevated plasma cholesterol. We found that the mice heterozygous for Mtap developed larger lesions compared with wild-type mice (49623±21650 versus 18899±9604 µm(2) per section [mean±SD]; P=0.01), with morphology similar to that of wild-type mice. The Mtap heterozygous mice demonstrated changes in metabolic and methylation profiles and CD4(+) cell counts. The Cdkn2a knockout mice had smaller lesions compared with wild-type and heterozygous mice, and there were no significant differences in lesion size in p19Arf and Cdkn2b mutants compared with wild type. We observed extensive, tissue-specific compensatory regulation of the Cdkn2a and Cdkn2b genes among the various knockout mice, making the effects on atherosclerosis difficult to interpret. CONCLUSIONS: Mtap plays a protective role against atherosclerosis, whereas Cdkn2a appears to be modestly proatherogenic. However, no relation was found between the 9p21 genotype and the transcription of 9p21 neighboring genes in primary human aortic vascular cells in vitro. There is extensive compensatory regulation in the highly conserved 9p21 orthologous region in mice.


Subject(s)
Atherosclerosis/genetics , Coronary Artery Disease/genetics , Animals , Cyclin-Dependent Kinase Inhibitor p16/genetics , Disease Models, Animal , Female , Male , Mice , Mice, Knockout , Microtubule-Associated Proteins/genetics
14.
J Biol Chem ; 283(17): 11633-44, 2008 Apr 25.
Article in English | MEDLINE | ID: mdl-18160395

ABSTRACT

Apolipoprotein AII (apoAII) transgenic (apoAIItg) mice exhibit several traits associated with the insulin resistance (IR) syndrome, including IR, obesity, and a marked hypertriglyceridemia. Because treatment of the apoAIItg mice with rosiglitazone ameliorated the IR and hypertriglyceridemia, we hypothesized that the hypertriglyceridemia was due largely to overproduction of very low density lipoprotein (VLDL) by the liver, a normal response to chronically elevated insulin and glucose. We now report in vivo and in vitro studies that indicate that hepatic fatty acid oxidation was reduced and lipogenesis increased, resulting in a 25% increase in triglyceride secretion in the apoAIItg mice. In addition, we observed that hydrolysis of triglycerides from both chylomicrons and VLDL was significantly reduced in the apoAIItg mice, further contributing to the hypertriglyceridemia. This is a direct, acute effect, because when mouse apoAII was injected into mice, plasma triglyceride concentrations were significantly increased within 4 h. VLDL from both control and apoAIItg mice contained significant amounts of apoAII, with approximately 4 times more apoAII on apoAIItg VLDL. ApoAII was shown to transfer spontaneously from high density lipoprotein (HDL) to VLDL in vitro, resulting in VLDL that was a poorer substrate for hydrolysis by lipoprotein lipase. These results indicate that one function of apoAII is to regulate the metabolism of triglyceride-rich lipoproteins, with HDL serving as a plasma reservoir of apoAII that is transferred to the triglyceride-rich lipoproteins in much the same way as VLDL and chylomicrons acquire most of their apoCs from HDL.


Subject(s)
Apolipoprotein A-II/physiology , Gene Expression Regulation , Insulin Resistance , Lipoproteins, VLDL/metabolism , Animals , Apolipoprotein A-II/metabolism , Chylomicrons/metabolism , Diterpenes , Fatty Acids/metabolism , Hydrolysis , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Retinyl Esters , Triglycerides/metabolism , Vitamin A/analogs & derivatives , Vitamin A/metabolism
15.
J Lipid Res ; 45(12): 2377-87, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15466364

ABSTRACT

We previously demonstrated that transgenic mice overexpressing mouse apolipoprotein A-II (apoA-II) exhibit several traits associated with the insulin resistance (IR) syndrome, including increased atherosclerosis, hypertriglyceridemia, obesity, and IR. The skeletal muscle appeared to be the insulin-resistant tissue in the apoA-II transgenic mice. We now demonstrate a decrease in FA oxidation in skeletal muscle of apoA-II transgenic mice, consistent with reports that decreased skeletal muscle FA oxidation is associated with increased skeletal muscle triglyceride accumulation, skeletal muscle IR, and obesity. The decrease in FA oxidation is not due to decreased carnitine palmitoyltransferase 1 activity, because oxidation of palmitate and octanoate were similarly decreased. Quantitative RT-PCR analysis of gene expression demonstrated that the decrease in FA oxidation may be explained by a decrease in medium chain acyl-CoA dehydrogenase. We previously demonstrated that HDLs from apoA-II transgenic mice exhibit reduced binding to CD36, a scavenger receptor involved in FA metabolism. However, studies of combined apoA-II transgenic and CD36 knockout mice suggest that the major effects of apoA-II are independent of CD36. Rosiglitazone treatment significantly ameliorated IR in the apoA-II transgenic mice, suggesting that the underlying mechanisms of IR in this animal model may share common features with certain types of human IR.


Subject(s)
Apolipoprotein A-II/genetics , Insulin Resistance/physiology , Animals , Apolipoprotein A-II/biosynthesis , Female , Gene Dosage , Glycogen/metabolism , Heterozygote , Homozygote , Insulin Resistance/genetics , Liver/metabolism , Male , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...