Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 89: 186-91, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24657474

ABSTRACT

A new method has been developed for separation and purification of fission (99)Mo from neutron activated uranium-aluminum alloy. Alkali dissolution of the irradiated target (100mg) results in aluminum along with (99)Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-α-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of (99)Mo was carried out using anion exchange method. The radiochemical yield of fission (99)Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards.


Subject(s)
Alloys/chemistry , Aluminum/chemistry , Molybdenum/isolation & purification , Radioisotopes/isolation & purification , Uranium/chemistry , Neutron Activation Analysis , Radiochemistry/methods , Spectrometry, Gamma
2.
Talanta ; 31(12): 1109-11, 1984 Dec.
Article in English | MEDLINE | ID: mdl-18963732

ABSTRACT

A potentiometric method for the determination of plutonium is described, in which the plutonium is quantitatively oxidized to plutonium(VI) with sodium bismuthate in nitric acid medium, the excess of oxidant is destroyed chemically and plutonium(VI) is reduced to plutonium(IV) with a measured excess of iron(II), the surplus of which is back-titrated with dichromate. For 3-5 mg of plutonium the error is less than 0.2%. For submilligram quantities of plutonium in presence of macro-amounts of uranium the error is below 2.0%.

SELECTION OF CITATIONS
SEARCH DETAIL
...