Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36838904

ABSTRACT

Berries of blackcurrant (Ribes nigrum L.) are popular for their strong and complex aroma and their benefits for health. In Burgundy (France), the most famous blackcurrant cultivar is the "Noir de Bourgogne". A blackcurrant breeding program was conducted to obtain new varieties, more resistant to infections and climate changes. The cultivar "Noir de Bourgogne" was crossed with seven other varieties in order to create a hybrid with good agronomic properties and organoleptic properties close to the ones of "Noir de Bourgogne". Several hybrids were created, and their aromatic profiles studied. Berries of eight cultivars, among which Noir de Bourgogne and hybrids resulting from crossings, were harvested during the summer of 2020. Volatile compounds of berries were analyzed by HS-SPME-GC-MS, and principal component analysis (PCA) was used as the most useful chemometric technique. The profiles in volatile compounds of hybrids were either different from those of the two parental varieties or close to that of varieties other than Bourgogne black. In all cases, the overall aroma strength of the hybrid did not equal that of the Noir de Bourgogne cultivar.


Subject(s)
Ribes , Volatile Organic Compounds , Humans , Plant Breeding , Gas Chromatography-Mass Spectrometry , Odorants/analysis , Seasons
2.
Data Brief ; 38: 107417, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34632015

ABSTRACT

The data were collected from a brown mustard seeds collection of 18 accessions during two years and in three distinct sites of production in France. The 18 accessions of mustard seeds were selected to be representative of genetic, agronomical and technological variabilities. All accessions were produced in the "Bourgogne" area. This article describes agronomical data (PMG, yield), genotyping data, global composition of mustard seeds (lipids, proteins and polysaccharides) and fine composition of the previous macronutrients potentially involved in the technological properties (fatty acids, storage proteins and osidic composition of polysaccharides). Additional data regarding the potential rheological property of each accessions were also reported. These data can be reused by food industries, breeders and geneticists in order to understand pedoclimatic effects (year and location) and the relation between mustard seed composition and the end-uses properties (paste mustard quality).

3.
Planta ; 236(5): 1419-31, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22729825

ABSTRACT

The compatible interaction between the model plant, Arabidopsis thaliana, and the GMI1000 strain of the phytopathogenic bacterium, Ralstonia solanacearum, was investigated in an in vitro pathosystem. We describe the progression of the bacteria in the root from penetration at the root surface to the xylem vessels and the cell type-specific, cell wall-associated modifications that accompanies bacterial colonization. Within 6 days post inoculation, R. solanacearum provoked a rapid plasmolysis of the epidermal, cortical, and endodermal cells, including those not directly in contact with the bacteria. Plasmolysis was accompanied by a global degradation of pectic homogalacturonanes as shown by the loss of JIM7 and JIM5 antibody signal in the cell wall of these cell types. As indicated by immunolabeling with Rsol-I antibodies that specifically recognize R. solanacearum, the bacteria progresses through the root in a highly directed, centripetal manner to the xylem poles, without extensive multiplication in the intercellular spaces along its path. Entry into the vascular cylinder was facilitated by cell collapse of the two pericycle cells located at the xylem poles. Once the bacteria reached the xylem vessels, they multiplied abundantly and moved from vessel to vessel by digesting the pit membrane between adjacent vessels. The degradation of the secondary walls of xylem vessels was not a prerequisite for vessel colonization as LM10 antibodies strongly labeled xylem cell walls, even at very late stages in disease development. Finally, the capacity of R. solanacearum to specifically degrade certain cell wall components and not others could be correlated with the arsenal of cell wall hydrolytic enzymes identified in the bacterial genome.


Subject(s)
Arabidopsis/microbiology , Cell Wall/microbiology , Host-Pathogen Interactions , Plant Roots/microbiology , Ralstonia solanacearum/pathogenicity , Arabidopsis/metabolism , Cell Wall/metabolism , Immunohistochemistry/methods , Lipopolysaccharides/immunology , Pectins/metabolism , Plant Diseases/microbiology , Plant Epidermis/cytology , Plant Epidermis/microbiology , Plant Roots/cytology , Ralstonia solanacearum/enzymology , Ralstonia solanacearum/immunology , Seedlings/microbiology , Xylem/cytology , Xylem/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...