Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (193)2023 03 03.
Article in English | MEDLINE | ID: mdl-36939248

ABSTRACT

Nanomaterial exposure can cause replication stress and genomic instability in cells. The degree of instability depends on the chemistry, size, and concentration of the nanomaterials, the time of exposure, and the exposed cell type. Several established methods have been used to elucidate how endogenous/exogenous agents impact global replication. However, replicon-level assays, such as the DNA fiber assay, are imperative to understand how these agents influence replication initiation, terminations, and replication fork progression. Knowing this allows one to understand better how nanomaterials increase the chances of mutation fixation and genomic instability. We used RAW 264.7 macrophages as model cells to study the replication dynamics under graphene oxide nanoparticle exposure. Here, we demonstrate the basic protocol for the DNA fiber assay, which includes pulse labeling with nucleotide analogs, cell lysis, spreading the pulse-labeled DNA fibers onto slides, fluorescent immunostaining of the nucleotide analogs within the DNA fibers, imaging of the replication intermediates within the DNA fibers using confocal microscopy, and replication intermediate analysis utilizing a computer-assisted scoring and analysis (CASA) software.


Subject(s)
DNA , Nanoparticles , Humans , DNA/genetics , DNA/metabolism , DNA Replication , DNA Damage , Genomic Instability , Nucleotides , DNA Repair
2.
J Mech Behav Biomed Mater ; 123: 104769, 2021 11.
Article in English | MEDLINE | ID: mdl-34412025

ABSTRACT

In orthopedic healthcare, Total Hip Replacement (THR) is a common and effective solution to hip-related bone and joint diseases/fracture; however, corrosion of the hip implant and the release of degradation metal ions/particles can lead to early implant failure and pose potential toxicity risk for the surrounding tissues. The main objective of this work was to investigate the potential role of Vitamin E to minimize corrosion-related concerns from CoCrMo hip implants. The study focused on two questions (i) Can Vitamin E inhibit CoCrMo corrosion? and (ii) Does Vitamin E moderate the toxicity associated with the CoCrMo implant particles? In the study (i) the electrochemical experiments (ASTM G61) with different concentrations of Vitamin E (1, 2, 3 mg/ml against the control) were performed using normal saline and simulated synovial fluid (Bovine calf serum-BCS, 30 g/L protein, pH 7.4) as electrolytes. The polished CoCrMo disc (Ra 50 nm) was the working electrode. The findings suggested that both Vitamin E-Saline (45 ± 0.9%) and Vitamin E-BCS (91 ± 3%) solutions protected against implant corrosion at a Vitamin E concentration of 3 mg/ml, but Vitamin E-BCS showed protection at all Vitamin E (1-3 mg/ml) concentration levels. These results suggested that the Vitamin E and the protein present in the BCS imparted additive effects towards the electrochemical inhibition. In the study (ii) the role of Vitamin E in cytotoxicity inhibition was studied using a mouse neuroblastoma cell line (N2a) for CoCrMo particles and Cr ions separately. The CoCrMo particles were generated from a custom-built hip simulator. The alamarBlue assay results suggested that Vitamin E provides significant protection (85% and 75% proliferation) to N2a cells against CoCrMo particles and Cr ions, respectively at 1 µg/ml concentration, as compared to the control group. However, the results obtained from ROS expression and DNA fiber staining suggest that Vitamin E is only effective against CoCrMo degradation particles and not against Cr ions. In summary, the findings show that Vitamin E can minimize the corrosion processes and play a role in minimizing the potential toxicity associated with implants.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Animals , Cattle , Corrosion , Hip Prosthesis/adverse effects , Metals , Vitamin E
3.
Cell Biol Toxicol ; 37(6): 833-847, 2021 12.
Article in English | MEDLINE | ID: mdl-33415469

ABSTRACT

The complexity of cobalt-chromium-molybdenum (CoCrMo) nanoparticles generated from the hip modular taper interfaces resulted in inconclusive outcomes on the level of toxicity in orthopedic patients. We used a hip simulator to generate physiologically relevant CoCrMo degradation products (DPs) to demonstrate the variation in the level of toxicity in neurons in comparison to processed degradation products (PDPs). The study outcomes indicate that DP induces a higher level of DNA damage in the form of double- and single-stranded DNA breaks and alkaline labile DNA adducts versus PDPs. The scientific advancements of this study are the following: (i) how DPs mimic more closely to the implant debris from hip implants in terms of bioactivity, (ii) how hip implant debris causes local and systemic issues, and (iii) methods to augment the biologic impact of implant debris. We discovered that DP is bioactive compared with PDP, and this should be considered in the toxicity evaluation related to implants. • The physicochemical characteristics of the CoCrMo is a major factor to consider for implant-related cytotoxicity or genotoxicity experimental design. • Elevated levels of intracellular ROS induced by the physiologically relevant wear particle are detrimental to the neuronal cells. • The DP can induce variation in DNA replication dynamics compared to PDP.


Subject(s)
Arthroplasty, Replacement, Hip , Nanoparticles , Corrosion , DNA Replication , Humans , Neurons , Vitallium
4.
Oncogene ; 38(28): 5643-5657, 2019 07.
Article in English | MEDLINE | ID: mdl-30967636

ABSTRACT

Platinum-based drugs such as cisplatin (CP) are the first-line chemotherapy for non-small-cell lung carcinoma (NSCLC). Unfortunately, NSCLC has a low response rate to CP and acquired resistance always occurs. Histone methylation regulates chromatin structure and is implicated in DNA repair. We hypothesize histone methylation regulators are involved in CP resistance. We therefore screened gene expression of known histone methyltransferases and demethylases in three NSCLC cell lines with or without acquired resistance to CP. JMJD2s are a family of histone demethylases that remove tri-methyl groups from H3K9 and H3K36. We found expression of several JMJD2 family genes upregulated in CP-resistant cells, with JMJD2B expression being upregulated in all three CP-resistant NSCLC cell lines. Further analysis showed increased JMJD2 protein expression coincided with decreased H3K9me3 and H3K36me3. Chemical inhibitors of JMJD2-family proteins increased H3K9me3 and H3K36me3 levels and sensitized resistant cells to CP. Mechanistic studies showed that JMJD2 inhibition decreased chromatin association of ATR and Chk1 and inhibited the ATR-Chk1 replication checkpoint. Our results reveal that JMJD2 demethylases are potential therapeutic targets to overcome CP resistance in NSCLC.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/pathology , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Lung Neoplasms/pathology , Ataxia Telangiectasia Mutated Proteins/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Checkpoint Kinase 1/metabolism , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases , Lung Neoplasms/metabolism , Methylation
5.
Oncogene ; 37(33): 4518-4533, 2018 08.
Article in English | MEDLINE | ID: mdl-29743597

ABSTRACT

MASTL kinase is essential for correct progression through mitosis, with loss of MASTL causing chromosome segregation errors, mitotic collapse and failure of cytokinesis. However, in cancer MASTL is most commonly amplified and overexpressed. This correlates with increased chromosome instability in breast cancer and poor patient survival in breast, ovarian and lung cancer. Global phosphoproteomic analysis of immortalised breast MCF10A cells engineered to overexpressed MASTL revealed disruption to desmosomes, actin cytoskeleton, PI3K/AKT/mTOR and p38 stress kinase signalling pathways. Notably, these pathways were also disrupted in patient samples that overexpress MASTL. In MCF10A cells, these alterations corresponded with a loss of contact inhibition and partial epithelial-mesenchymal transition, which disrupted migration and allowed cells to proliferate uncontrollably in 3D culture. Furthermore, MASTL overexpression increased aberrant mitotic divisions resulting in increased micronuclei formation. Mathematical modelling indicated that this delay was due to continued inhibition of PP2A-B55, which delayed timely mitotic exit. This corresponded with an increase in DNA damage and delayed transit through interphase. There were no significant alterations to replication kinetics upon MASTL overexpression, however, inhibition of p38 kinase rescued the interphase delay, suggesting the delay was a G2 DNA damage checkpoint response. Importantly, knockdown of MASTL, reduced cell proliferation, prevented invasion and metastasis of MDA-MB-231 breast cancer cells both in vitro and in vivo, indicating the potential of future therapies that target MASTL. Taken together, these results suggest that MASTL overexpression contributes to chromosome instability and metastasis, thereby decreasing breast cancer patient survival.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Chromosomal Instability/genetics , Microtubule-Associated Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Actin Cytoskeleton/genetics , Animals , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Proliferation/genetics , DNA Damage/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Humans , MAP Kinase Signaling System/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics
6.
Anal Biochem ; 552: 45-49, 2018 07 01.
Article in English | MEDLINE | ID: mdl-28322800

ABSTRACT

Somatic human cells contain thousands of copies of mitochondrial DNA (mtDNA). In eukaryotes, natural transfer of mtDNA into the nucleus generates nuclear mitochondrial DNA (NUMT) copies. We name this phenomenon as "numtogenesis". Numtogenesis is a well-established evolutionary process reported in various sequenced eukaryotic genomes. We have established a molecular tool to rapidly detect and analyze NUMT insertions in whole genomes. To date, NUMT analyses depend on deep genome sequencing combined with comprehensive computational analyses of the whole genome. This is time consuming, cumbersome and cost prohibitive. Further, most laboratories cannot accomplish such analyses due to limited skills. We report the development of single-molecule mtFIBER FISH (fluorescence in situ hybridization) to study numtogenesis. The development of mtFIBER FISH should aid in establishing a role for numtogenesis in cancers and other human diseases. This novel technique should help distinguish and monitor cancer stages and progression, aid in elucidation of basic mechanisms underlying tumorigenesis and facilitate analyses of processes related to early detection of cancer, screening and/or cancer risk assessment.


Subject(s)
Cell Nucleus/metabolism , DNA, Mitochondrial/metabolism , In Situ Hybridization, Fluorescence/methods , Biological Transport , Cell Line, Tumor , Cell Nucleus/genetics , Humans
7.
Pigment Cell Melanoma Res ; 29(1): 68-80, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26437005

ABSTRACT

The objective of this study was to assess potential functional attenuation or inactivation of the intra-S checkpoint during melanoma development. Proliferating cultures of skin melanocytes, fibroblasts, and melanoma cell lines were exposed to increasing fluences of UVC and intra-S checkpoint responses were quantified. Melanocytes displayed stereotypic intra-S checkpoint responses to UVC qualitatively and quantitatively equivalent to those previously demonstrated in skin fibroblasts. In comparison with fibroblasts, primary melanocytes displayed reduced UVC-induced inhibition of DNA strand growth and enhanced degradation of p21Waf1 after UVC, suggestive of enhanced bypass of UVC-induced DNA photoproducts. All nine melanoma cell lines examined, including those with activating mutations in BRAF or NRAS oncogenes, also displayed proficiency in activation of the intra-S checkpoint in response to UVC irradiation. The results indicate that bypass of oncogene-induced senescence during melanoma development was not associated with inactivation of the intra-S checkpoint response to UVC-induced DNA replication stress.


Subject(s)
Melanocytes/cytology , Melanocytes/radiation effects , Melanoma/pathology , S Phase Cell Cycle Checkpoints/radiation effects , Ultraviolet Rays , Biomarkers/metabolism , Cell Line , Checkpoint Kinase 1 , DNA Damage , DNA Repair/radiation effects , DNA Replication/radiation effects , DNA-Directed DNA Polymerase/metabolism , Diploidy , Dose-Response Relationship, Radiation , Fibroblasts/radiation effects , Humans , Melanins/metabolism , Phosphorylation/radiation effects , Protein Kinases/metabolism , Pyrimidine Dimers/metabolism
8.
Oncotarget ; 6(2): 732-45, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25544751

ABSTRACT

SWI/SNF complexes utilize BRG1 (also known as SMARCA4) or BRM (also known as SMARCA2) as alternative catalytic subunits with ATPase activity to remodel chromatin. These chromatin-remodeling complexes are required for mammalian development and are mutated in ~20% of all human primary tumors. Yet our knowledge of their tumor-suppressor mechanism is limited. To investigate the role of SWI/SNF complexes in the DNA-damage response (DDR), we used shRNAs to deplete BRG1 and BRM and then exposed these cells to a panel of 6 genotoxic agents. Compared to controls, the shRNA knockdown cells were hypersensitive to certain genotoxic agents that cause double-strand breaks (DSBs) associated with stalled/collapsed replication forks but not to ionizing radiation-induced DSBs that arise independently of DNA replication. These findings were supported by our analysis of DDR kinases, which demonstrated a more prominent role for SWI/SNF in the activation of the ATR-Chk1 pathway than the ATM-Chk2 pathway. Surprisingly, γH2AX induction was attenuated in shRNA knockdown cells exposed to a topoisomerase II inhibitor (etoposide) but not to other genotoxic agents including IR. However, this finding is compatible with recent studies linking SWI/SNF with TOP2A and TOP2BP1. Depletion of BRG1 and BRM did not result in genomic instability in a tumor-derived cell line but did result in nucleoplasmic bridges in normal human fibroblasts. Taken together, these results suggest that SWI/SNF tumor-suppressor activity involves a role in the DDR to attenuate replicative stress and genomic instability. These results may also help to inform the selection of chemotherapeutics for tumors deficient for SWI/SNF function.


Subject(s)
DNA Damage , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Uterine Cervical Neoplasms/genetics , Cell Line, Tumor , Cell Survival/genetics , DNA Helicases/deficiency , Female , Gene Knockdown Techniques , HeLa Cells , Humans , Nuclear Proteins/deficiency , RNA, Small Interfering/genetics , Transcription Factors/deficiency
9.
Photochem Photobiol ; 91(1): 109-16, 2015.
Article in English | MEDLINE | ID: mdl-25316620

ABSTRACT

We investigated the hypothesis that the strength of the activation of the intra-S DNA damage checkpoint varies within the S phase. Synchronized diploid human fibroblasts were exposed to either 0 or 2.5 J m(-2) UVC in early, mid- and late-S phase. The endpoints measured were the following: (1) radio-resistant DNA synthesis (RDS), (2) induction of Chk1 phosphorylation, (3) initiation of new replicons and (4) length of replication tracks synthesized after irradiation. RDS analysis showed that global DNA synthesis was inhibited by approximately the same extent (30 ± 12%), regardless of when during S phase the fibroblasts were exposed to UVC. Western blot analysis revealed that the UVC-induced phosphorylation of checkpoint kinase 1 (Chk1) on serine 345 was high in early and mid S but 10-fold lower in late S. DNA fiber immunostaining studies indicated that the replication fork displacement rate decreased in irradiated cells at the three time points examined; however, replicon initiation was inhibited strongly in early and mid S, but this response was attenuated in late S. These results suggest that the intra-S checkpoint activated by UVC-induced DNA damage is not as robust toward the end of S phase in its inhibition of the latest firing origins in human fibroblasts.


Subject(s)
DNA Damage , Diploidy , S Phase , DNA Replication , Fibroblasts/cytology , Humans
10.
Nucleic Acids Res ; 42(10): 6337-51, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24771347

ABSTRACT

Poly(ADP-ribose) polymerase-1 (PARP-1) is an abundant nuclear enzyme in mammalian cells. The enzyme synthesizes polymers of ADP-ribose from the coenzyme NAD(+) and plays multifaceted roles in cellular responses to genotoxic stress, including DNA repair. It had been shown that mouse fibroblasts treated with a DNA methylating agent in combination with a PARP inhibitor exhibit higher cytotoxicity than cells treated with methylating agent alone. This lethality of the PARP inhibitor is dependent on apurinic/apyrimidinic (AP) sites in the DNA and the presence of PARP-1. Here, we show that purified PARP-1 is capable of forming a DNA-protein cross-link (DPC) by covalently attaching to the AP site. This DPC formation is specific to the presence of the natural AP site in DNA and is accompanied by a single-strand DNA incision. Cellular studies confirm the formation of PARP-1 DPCs during alkylating agent-induced base excision repair (BER) and formation of DPCs is enhanced by a PARP inhibitor. Using an N-terminal and C-terminal truncated PARP-1 we show that a polypeptide fragment comprising the zinc 3 and BRCT sub-domains is sufficient for DPC formation. The covalent attachment of PARP-1 to AP site-containing DNA appears to be a suicidal event when BER is overwhelmed or disrupted.


Subject(s)
DNA Repair , DNA/chemistry , Poly(ADP-ribose) Polymerases/chemistry , Animals , Cells, Cultured , Cysteine , Humans , Mice , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/analysis , Protein Structure, Tertiary
11.
Nanotoxicology ; 7(6): 1111-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-22770119

ABSTRACT

The use of nanoparticles in consumer products increases their prevalence in the environment and the potential risk to human health. Although recent studies have shown in vivo and in vitro toxicity of titanium dioxide nanoparticles (nano-TiO2), a more detailed view of the underlying mechanisms of this response needs to be established. Here, the effects of nano-TiO2 on the DNA damage response and DNA replication dynamics were investigated in human dermal fibroblasts. Specifically, the relationship between nano-TiO2 and the DNA damage response pathways regulated by ATM/Chk2 and ATR/Chk1 was examined. The results show increased phosphorylation of H2AX, ATM, and Chk2 after exposure. In addition, nano-TiO2 inhibited the overall rate of DNA synthesis and frequency of replicon initiation events in DNA-combed fibres. Taken together, these results demonstrate that exposure to nano-TiO2 activates the ATM/Chk2 DNA damage response pathway.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Checkpoint Kinase 2/metabolism , DNA Damage/drug effects , Fibroblasts/drug effects , Metal Nanoparticles/toxicity , Titanium/toxicity , Ataxia Telangiectasia Mutated Proteins/genetics , Cells, Cultured , Checkpoint Kinase 2/genetics , Culture Media , DNA Damage/physiology , Fibroblasts/physiology , Histones/genetics , Histones/metabolism , Humans , Metal Nanoparticles/chemistry , Microscopy, Acoustic , Phosphorylation , Titanium/chemistry
12.
EMBO J ; 31(17): 3537-49, 2012 Aug 29.
Article in English | MEDLINE | ID: mdl-22863775

ABSTRACT

Mammalian CST (CTC1-STN1-TEN1) associates with telomeres and depletion of CTC1 or STN1 causes telomere defects. However, the function of mammalian CST remains poorly understood. We show here that depletion of CST subunits leads to both telomeric and non-telomeric phenotypes associated with DNA replication defects. Stable knockdown of CTC1 or STN1 increases the incidence of anaphase bridges and multi-telomeric signals, indicating genomic and telomeric instability. STN1 knockdown also delays replication through the telomere indicating a role in replication fork passage through this natural barrier. Furthermore, we find that STN1 plays a novel role in genome-wide replication restart after hydroxyurea (HU)-induced replication fork stalling. STN1 depletion leads to reduced EdU incorporation after HU release. However, most forks rapidly resume replication, indicating replisome integrity is largely intact and STN1 depletion has little effect on fork restart. Instead, STN1 depletion leads to a decrease in new origin firing. Our findings suggest that CST rescues stalled replication forks during conditions of replication stress, such as those found at natural replication barriers, likely by facilitating dormant origin firing.


Subject(s)
DNA Replication , Telomere-Binding Proteins/genetics , Telomere/metabolism , Cell Line, Tumor , Gene Knockdown Techniques , Genomic Instability , Humans , Telomeric Repeat Binding Protein 1/genetics
13.
Adv Enzyme Regul ; 51(1): 257-71, 2011.
Article in English | MEDLINE | ID: mdl-21093474

ABSTRACT

In summary, recently developed technologies have begun to draw back the curtain of mystery that obscures some of the basic mechanisms of DNA replication at multiple levels. Studies using extended DNA and chromatin fiber techniques have proven valuable for identifying the location of origins of replication at specific genomic sites and determining their temporal order of replication, for identifying and quantifying sites of DNA damage and localizing chromatin proteins in relation to sites of DNA replication. The future potential of these methods include further discoveries in functional genomics and contributions to the elucidation of the histone code. Such studies could prove very valuable in studies of the mechanisms of cancer development, aging, and other processes of disordered genomic functioning.


Subject(s)
DNA Replication , S Phase , Chromatin/metabolism , Chromatin/ultrastructure , DNA/chemistry , DNA/metabolism , Humans , Neoplasms/genetics , Neoplasms/metabolism
14.
Mutat Res ; 694(1-2): 65-71, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-20851134

ABSTRACT

Single strand breaks (SSBs) are one of the most frequent DNA lesions caused by endogenous and exogenous agents. The most utilized alkaline-based assays for SSB detection frequently give false positive results due to the presence of alkali-labile sites that are converted to SSBs. Methoxyamine, an acidic O-hydroxylamine, has been utilized to measure DNA damage in cells. However, the neutralization of methoxyamine is required prior to usage. Here we developed a convenient, specific SSB assay using alkaline gel electrophoresis (AGE) coupled with a neutral O-hydroxylamine, O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (OTX). OTX stabilizes abasic sites (AP sites) to prevent their alkaline incision while still allowing for strong alkaline DNA denaturation. DNA from DT40 and isogenic polymerase ß null cells exposed to methyl methanesulfonate were applied to the OTX-coupled AGE (OTX-AGE) assay. Time-dependent increases in SSBs were detected in each cell line with more extensive SSB formation in the null cells. These findings were supported by an assay that indirectly detects SSBs through measuring NAD(P)H depletion. An ARP-slot blot assay demonstrated a significant time-dependent increase in AP sites in both cell lines by 1mM MMS compared to control. Furthermore, the Pol ß-null cells displayed greater AP site formation than the parental DT40 cells. OTX use represents a facile approach for assessing SSB formation, whose benefits can also be applied to other established SSB assays.


Subject(s)
DNA Damage , DNA Repair , Hydroxylamines/chemistry , Alkylating Agents/pharmacology , Animals , Chickens , DNA/metabolism , Electrophoresis , Hydrogen-Ion Concentration , Hydroxylamine/pharmacology , Methyl Methanesulfonate/pharmacology , Mutagens , NADP/chemistry , Time Factors
15.
FASEB J ; 24(10): 3674-80, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20511393

ABSTRACT

We investigated whether apurinic/apyrimidinic (AP/abasic) sites were more frequent in regions of DNA replication in cells and whether their number increased during oxidative stress. DNA fiber spreading and fluorescent immunostaining were used to detect areas of DNA replication and sites of AP lesions in extended DNA fibers. The distribution of AP sites was determined in DNA fibers from vertebrate cells maintained under normal culture conditions or stressed with exogenous H(2)O(2). AP lesions per unit length were enumerated in bulk DNA or at replication sites. The background density of AP sites in DNA fibers was 5.4 AP sites/10(6) nt, while newly replicated DNA contained 12.9 AP sites/10(6) nt. In cells exposed to 20 µM H(2)O(2), AP sites in newly replicated DNA increased to 20.8/10(6) nt. Determinations of AP site density in bulk DNA by fiber analysis or standard slot blot assays agreed to within 10%. Our findings show that the fiber assay not only accurately determines the frequency of AP sites but also shows their distribution. They also reveal that there is increased susceptibility to oxidative damage in DNA regions undergoing replication, which may explain the previously observed clustering of AP sites.


Subject(s)
DNA Replication , Animals , Cell Line , Chickens , DNA Damage , Microscopy, Fluorescence , Reactive Oxygen Species/metabolism
16.
Nucleic Acids Res ; 38(20): 6906-19, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20571081

ABSTRACT

For DNA replication to occur, chromatin must be remodeled. Yet, we know very little about which proteins alter nucleosome occupancy at origins and replication forks and for what aspects of replication they are required. Here, we demonstrate that the BRG1 catalytic subunit of mammalian SWI/SNF-related complexes co-localizes with origin recognition complexes, GINS complexes, and proliferating cell nuclear antigen at sites of DNA replication on extended chromatin fibers. The specific pattern of BRG1 occupancy suggests it does not participate in origin selection but is involved in the firing of origins and the process of replication elongation. This latter function is confirmed by the fact that Brg1 mutant mouse embryos and RNAi knockdown cells exhibit a 50% reduction in replication fork progression rates, which is associated with decreased cell proliferation. This novel function of BRG1 is consistent with its requirement during embryogenesis and its role as a tumor suppressor to maintain genome stability and prevent cancer.


Subject(s)
DNA Helicases/physiology , DNA Replication , Nuclear Proteins/physiology , Transcription Factors/physiology , Animals , Cell Proliferation , Chromatin/chemistry , DNA Helicases/analysis , DNA Helicases/genetics , DNA-Binding Proteins/analysis , Embryonic Development , Erythroid Cells/metabolism , HeLa Cells , Humans , Mice , Mutation , Nuclear Proteins/analysis , Nuclear Proteins/genetics , Phenotype , Transcription Factors/analysis , Transcription Factors/genetics
17.
Mol Cancer Res ; 8(2): 204-15, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20145043

ABSTRACT

From in vitro studies, flap endonuclease 1 (FEN1) has been proposed to play a role in the long patch (LP) base excision repair (BER) subpathway. Yet the role of FEN1 in BER in the context of the living vertebrate cell has not been thoroughly explored. In the present study, we cloned a DT40 chicken cell line with a deletion in the FEN1 gene and found that these FEN1-deficient cells exhibited hypersensitivity to H(2)O(2). This oxidant produces genotoxic lesions that are repaired by BER, suggesting that the cells have a deficiency in BER affecting survival. In experiments with extracts from the isogenic FEN1 null and wild-type cell lines, the LP-BER activity of FEN1 null cells was deficient, whereas repair by the single-nucleotide BER subpathway was normal. Other consequences of the FEN1 deficiency were also evaluated. These results illustrate that FEN1 plays a role in LP-BER in higher eukaryotes, presumably by processing the flap-containing intermediates of BER.


Subject(s)
DNA Repair/genetics , DNA/genetics , Flap Endonucleases/genetics , Oxidative Stress/genetics , Animals , Cell Line , Chickens , DNA/metabolism , DNA Damage/drug effects , DNA Damage/genetics , DNA Replication/genetics , Eukaryotic Cells/metabolism , Hydrogen Peroxide/toxicity , Nucleotides/genetics , Oxidants/toxicity , Oxidative Stress/drug effects , Vertebrates/genetics , Vertebrates/metabolism
18.
Epigenetics Chromatin ; 2(1): 6, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19442263

ABSTRACT

BACKGROUND: The GINS complex is thought to be essential for the processes of initiation and elongation of DNA replication. This complex contains four subunits, one of which (Psf1) is proposed to bind to both chromatin and DNA replication-associated proteins. To date there have been no microscopic analyses to evaluate the chromatin distribution of this complex. Here, we show the organization of GINS complexes on extended chromatin fibers in relation to sites of DNA replication and replication-associated proteins. RESULTS: Using immunofluorescence microscopy we were able to visualize ORC1, ORC2, PCNA, and GINS complex proteins Psf1 and Psf2 bound to extended chromatin fibers. We were also able to detect these proteins concurrently with the visualization of tracks of recently replicated DNA where EdU, a thymidine analog, was incorporated. This allowed us to assess the chromatin association of proteins of interest in relation to the process of DNA replication. ORC and GINS proteins were found on chromatin fibers before replication could be detected. These proteins were also associated with newly replicated DNA in bead-like structures. Additionally, GINS proteins co-localized with PCNA at sites of active replication. CONCLUSION: In agreement with its proposed role in the initiation of DNA replication, GINS proteins associated with chromatin near sites of ORC binding that were devoid of EdU (absence of DNA replication). The association of GINS proteins with PCNA was consistent with a role in the process of elongation. Additionally, the large size of our chromatin fibers (up to approximately 7 Mb) allowed for a more expansive analysis of the distance between active replicons than previously reported.

19.
Nucleic Acids Res ; 37(1): 60-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19010964

ABSTRACT

A major challenge each human cell-division cycle is to ensure that DNA replication origins do not initiate more than once, a phenomenon known as re-replication. Acute deregulation of replication control ultimately causes extensive DNA damage, cell-cycle checkpoint activation and cell death whereas moderate deregulation promotes genome instability and tumorigenesis. In the absence of detectable increases in cellular DNA content however, it has been difficult to directly demonstrate re-replication or to determine if the ability to re-replicate is restricted to a particular cell-cycle phase. Using an adaptation of DNA fiber spreading we report the direct detection of re-replication on single DNA molecules from human chromosomes. Using this method we demonstrate substantial re-replication within 1 h of S phase entry in cells overproducing the replication factor, Cdt1. Moreover, a comparison of the HeLa cancer cell line to untransformed fibroblasts suggests that HeLa cells produce replication signals consistent with low-level re-replication in otherwise unperturbed cell cycles. Re-replication after depletion of the Cdt1 inhibitor, geminin, in an untransformed fibroblast cell line is undetectable by standard assays but readily quantifiable by DNA fiber spreading analysis. Direct evaluation of re-replicated DNA molecules will promote increased understanding of events that promote or perturb genome stability.


Subject(s)
DNA Replication , Cell Cycle/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/biosynthesis , Cell Cycle Proteins/genetics , Cell Line , DNA/biosynthesis , DNA/chemistry , Fluorescent Antibody Technique , Geminin , HeLa Cells , Humans , RNA Interference , S Phase/genetics
20.
Mol Cell Biol ; 28(18): 5621-33, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18606781

ABSTRACT

Damaged DNA binding protein 1, DDB1, bridges an estimated 90 or more WD40 repeats (DDB1-binding WD40, or DWD proteins) to the CUL4-ROC1 catalytic core to constitute a potentially large number of E3 ligase complexes. Among these DWD proteins is the human immunodeficiency virus type 1 (HIV-1) Vpr-binding protein VprBP, whose cellular function has yet to be characterized but has recently been found to mediate Vpr-induced G(2) cell cycle arrest. We demonstrate here that VprBP binds stoichiometrically with DDB1 through its WD40 domain and through DDB1 to CUL4A, subunits of the COP9/signalsome, and DDA1. The steady-state level of VprBP remains constant during interphase and decreases during mitosis. VprBP binds to chromatin in a DDB1-independent and cell cycle-dependent manner, increasing from early S through G(2) before decreasing to undetectable levels in mitotic and G(1) cells. Silencing VprBP reduced the rate of DNA replication, blocked cells from progressing through the S phase, and inhibited proliferation. VprBP ablation in mice results in early embryonic lethality. Conditional deletion of the VprBP gene in mouse embryonic fibroblasts results in severely defective progression through S phase and subsequent apoptosis. Our studies identify a previously unknown function of VprBP in S-phase progression and suggest the possibility that HIV-1 Vpr may divert an ongoing chromosomal replication activity to facilitate viral replication.


Subject(s)
Carrier Proteins/metabolism , Cullin Proteins/metabolism , DNA Replication , DNA-Binding Proteins/metabolism , Embryo, Mammalian/physiology , HIV-1/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Carrier Proteins/genetics , Cell Cycle/physiology , Cells, Cultured , Chromatin/metabolism , Cullin Proteins/genetics , DNA-Binding Proteins/genetics , Female , HIV-1/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Binding , Protein Serine-Threonine Kinases , RNA Interference , Ubiquitin-Protein Ligases/genetics , vpr Gene Products, Human Immunodeficiency Virus/genetics , vpr Gene Products, Human Immunodeficiency Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...