Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 14(36): 8100-8106, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37657083

ABSTRACT

Spin-crossover particles of [Fe(Htrz)2trz](BF4) with sizes of some hundred nanometers are studied by in situ electron microscopy. Despite their high radiation sensitivity, it was possible to analyze the particles by imaging and diffraction so that a detailed analysis of crystallographic defects in individual particles became possible. The presence of one or several tilt boundaries, where the tilt axis is the direction of the polymer chains, is detected in each particle. An in situ exposure of the particles to temperature variations or short laser pulses to induce the spin crossover shows that the defect structure only changes after a high number of transformations between the low-spin and high-spin phases. The observations are explained by the anisotropy of the atomic architecture within the crystals, which facilitates defects between weakly linked crystallographic planes.

2.
Chem Sci ; 14(26): 7185-7191, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37416698

ABSTRACT

The impact of solvent on spin crossover (SCO) behaviour is reported in two solvates [Fe(qsal-I)2]NO3·2ROH (qsal-I = 4-iodo-2-[(8-quinolylimino)methyl]phenolate; R = Me 1 or Et 2) which undergo abrupt and gradual SCO, respectively. A symmetry-breaking phase transition due to spin-state ordering from a [HS] to [HS-LS] state occurs at 210 K in 1, while T1/2 = 250 K for the EtOH solvate, where complete SCO occurs. The MeOH solvate exhibits LIESST and reverse-LIESST from the [HS-LS] state, revealing a hidden [LS] state. Moreover, photocrystallographic studies on 1 at 10 K reveal re-entrant photoinduced phase transitions to a high symmetry [HS] phase when irradiated at 980 nm or a high symmetry [LS] phase after irradiation at 660 nm. This study represents the first example of bidirectional photoswitchability and subsequent symmetry-breaking from a [HS-LS] state in an iron(iii) SCO material.

3.
Small ; 19(39): e2303701, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37246252

ABSTRACT

An unusual expansion dynamics of individual spin crossover nanoparticles is studied by ultrafast transmission electron microscopy. After exposure to nanosecond laser pulses, the particles exhibit considerable length oscillations during and after their expansion. The vibration period of 50-100 ns is of the same order of magnitude as the time that the particles need for a transition from the low-spin to the high-spin state. The observations are explained in Monte Carlo calculations using a model where elastic and thermal coupling between the molecules within a crystalline spin crossover particle govern the phase transition between the two spin states. The experimentally observed length oscillations are in agreement with the calculations, and it is shown that the system undergoes repeated transitions between the two spin states until relaxation in the high-spin state occurs due to energy dissipation. Spin crossover particles are therefore a unique system where a resonant transition between two phases occurs in a phase transformation of first order.

4.
Dalton Trans ; 51(24): 9302-9313, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35670314

ABSTRACT

We present herein a family of molecular cis-[FeII(X-PPMA)2(NCS)2]·H2O [4-X-N-(phenyl(pyridin-2-yl)methylene)aniline; X-PPMA; X = -Cl (1), -Br (2), and -CH3 (3)] complexes that exhibit spin crossover behaviour above room temperature. Judiciously designed bidentate N-donor Schiff bases of 2-benzoylpyridine and para-substituted anilines in combination with Fe(NCS)2 were used for the synthesis of complexes 1-3. The relatively strong ligand field of the Schiff bases stabilises the low spin state of iron(II) up to 300 K which is evident from magnetic measurements, room temperature Mössbauer spectra and crystallographic bond/angle distortion parameters. Interestingly, complexes 1-3 crystallize in a tetragonal system with either a P43212 or P41212 chiral space group from achiral building units due to the supramolecular helical arrangements of molecules through intermolecular (pyridine)C-H⋯C(NCS) interactions in the crystalline state. Complexes 1 and 2 exhibit complete, gradual and slightly irreversible spin crossover behaviour in the temperature range of 300-500 K with equilibrium temperatures (T1/2) 375 K (1) and 380 K (2). The spin state evolution of iron(II) in complexes 1 and 2 is monitored between 150 K and 450 K through variable temperature crystallographic studies in the warming mode. The structural data are in good agreement with the 94% (1) and 87% (2) high spin conversion of iron(II) at 450 K. At a high temperature (450 K), some minor irreversible ligand motion is noticed in complexes 1 and 2, in addition to a complete solvent loss that may induce the slight irreversibility of the spin crossover. On the other hand, complex 3 shows a complete and gradual spin crossover in the temperature range of 10-475 K with strong irreversible features. The equilibrium temperatures obtained upon first warming (T1/2↑) and second cooling (T1/2↓) are 375 K and 200 K, respectively. In complex 3, the loss of a water molecule triggers strong deviations in the spin crossover behaviour. Moreover, dehydrated complex 3 exhibits photoswitching LIESST effect with a relaxation temperature T(LIESST) = 60 K.

5.
Inorg Chem ; 61(17): 6641-6649, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35442030

ABSTRACT

We investigate the effects of a broad array of external stimuli on the structural, spin-crossover (SCO) properties and nature of the elastic interaction within the two-dimensional Hofmann framework material [Fe(cintrz)2Pd(CN)4]·guest (cintrz = N-cinnamalidene 4-amino-1,2,4-triazole; A·guest; guest = 3H2O, 2H2O, and Ø). This framework exhibits a delicate balance between ferro- and antiferro-elastic interaction characters; we show that manipulation of the pore contents across guests = 3H2O, 2H2O, and Ø can be exploited to regulate this balance. In A·3H2O, the dominant antiferroelastic interaction character between neighboring FeII sites sees the low-temperature persistence of the mixed spin-state species {HS-LS} for {Fe1-Fe2} (HS = high spin, LS = low spin). Elastic interaction strain is responsible for stabilizing the {HS-LS} state and can be overcome by three mechanisms: (1) partial (2H2O) or complete (Ø) guest removal, (2) irradiation via the reverse light-induced excited spin-state trapping (LIESST) effect (λ = 830 nm), and (3) the application of external hydrostatic pressure. Combining experimental data with elastic models presents a clear interpretation that while guest molecules cause a negative chemical pressure, they also have consequences for the elastic interactions between metals beyond the simple chemical pressure picture typically proposed.

6.
Inorg Chem ; 61(6): 2945-2953, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35119281

ABSTRACT

In this paper, we report the chemical strategy followed to obtain, in a direct way, nanoparticles of the RbxMn[Fe(CN)6](x+2)/3·nH2O (RbMnFe) Prussian blue analogue with the aim of keeping the switching ability of this compound at the nanoscale. The switching properties come from a reversible electron transfer between the iron and manganese ions and depends on the rubidium content in the structure that has to be higher than 0.6. Despite the multifunctionality of this family of compounds and its interest in various applications, no systematic studies were performed to obtain well-defined nanoparticles. This paper relates to such an investigation. To draw relationship between size reduction, composition, and switching properties, a special attention was brought to the determination of the composition through elemental analysis and structure refinement of powder X-ray diffraction patterns together with infrared spectroscopy and elemental analysis. Several chemical parameters were explored to control both the size reduction and the composition following a direct synthetic approach. The results show that the smaller the particles, the lower the rubidium content. This observation might prevent the observation of switching properties on very small particles. Despite this antagonist effect, we achieved switchable particles of around 200 nm without any use of surfactant. Moreover, the size reduction is associated with the observation of the electron transfer down to 52% of rubidium in the nanoparticles against 64% in microparticles. This work is of particular interest in processing such nanoparticles into devices.

7.
Mater Horiz ; 8(8): 2310-2315, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34846435

ABSTRACT

Molecular systems can exhibit multi-stimuli switching of their properties, with spin crossover materials having unique magnetic transition triggered by temperature and light, among others. Light-induced room temperature operation is however elusive, as optical changes between metastable spin states require cryogenic temperatures. Furthermore, electrical detection is hampered by the intrinsic low conductivity properties of these materials. We show here how a graphene underlayer reveals the light-induced heating that triggers a spin transition, paving the way for using these molecules for room temperature optoelectronic applications.

8.
Adv Mater ; 33(52): e2105586, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34601766

ABSTRACT

Spin crossover (SCO) is a promising switching phenomenon when implemented in electronic devices as molecules, thin films or nanoparticles. Among the properties modulated along this phenomenon, optically induced mechanical changes are of tremendous importance as they can work as fast light-induced mechanical switches or allow to investigate and control microstructural strains and fatigability. The development of characterization techniques probing nanoscopic behavior with high spatio-temporal resolution allows to trigger and visualize such mechanical changes of individual nanoscopic objects. Here, ultrafast transmission electron microscopy (UTEM) is used to precisely probe the length changes of individual switchable nanoparticles induced thermally by nanosecond laser pulses. This allows revealing of the mechanisms of spin switching, leading to the macroscopic expansion of SCO materials. This study is conducted on individual pure SCO nanoparticles and SCO nanoparticles encapsulating gold nanorods that serve for plasmonic heating under laser pulses. Length changes are compared with time-resolved optical measurements performed on an assembly of these particles.

9.
Inorg Chem ; 60(9): 6536-6549, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33843234

ABSTRACT

Two new mononuclear Fe(II) polymorphs, [(C2H5)4N]2[Fe(py3C-OEt)(NCS)3]2 (1) and [(C2H5)4N][Fe(py3C-OEt)(NCS)3] (2) (py3C-OEt = tris(pyridin-2-yl)ethoxymethane), have been synthesized and characterized by single-crystal X-ray diffraction, by magnetic and photomagnetic measurements, and by detailed variable-temperature infrared spectroscopy. The molecular structure, in both complexes, is composed of the same anionic [Fe(py3C-OEt)(NCS)3]- complex (two units for 1 and one unit for 2) generated by coordination to the Fe(II) metal center of one tridentate py3C-OEt tripodal ligand and three terminal κN-SCN coligands. Magnetic studies revealed that polymorph 2 displays a high-spin (HS) state over the entire studied temperature range (300-10 K), while complex 1 exhibits an abrupt and complete spin crossover (SCO) transition at ca. 132.3 K, the structural characterizations of which, performed at 295 and 100 K, show a strong modification, resulting from the thermal evolutions of the Fe-N bond lengths and of the distortion parameters (∑ and Θ) of the FeN6 coordination sphere, in agreement with the presence of HS and low-spin (LS) states at 295 and 100 K, respectively. This thermal transition has been also confirmed by the thermal evolution of the maximum absorbance for ν(NCS) vibrational bands recorded in the temperature range 200-10 K. In 1 the signature of a metastable photoinduced HS state has been observed using photomagnetic and photoinfrared spectroscopy, leading to a similar T(LIESST) relaxation temperature (LIESST = light-induced excited spin-state trapping) of 70 K.

10.
Dalton Trans ; 50(3): 1086-1096, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33367357

ABSTRACT

OctaDist is an interactive and visual program for determination of structural distortion in octahedral coordination complexes such as spin crossover complexes, single-ion magnets, perovskites or metal-organic frameworks. OctaDist computes the octahedral distortion parameters initially designed in the context of the spin-crossover phenomenon and denoted ζ, Σ, and Θ from standard structural files. The program also provides additional tools for molecular analyses and visualization. It emphasizes performance, flexibility, ease of use, application programming interface (API) consistency, and clear documentation. The modules and classes in OctaDist can be easily customized to include new algorithms or analytical tools. OctaDist is cross-platform supported for modern operating systems and is available as open-source distributed under the GNU General Public License version 3.

11.
Chemistry ; 27(5): 1483-1486, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-32692437

ABSTRACT

The spin crossover (SCO) phenomenon corresponds to a modification that originates at the atomic scale. However, the simple consideration of the transformations that occur following the SCO at this scale or in its close vicinity does not allow anyone to truly understand, anticipate and thus take advantage of what happens at the scale of the material, and even less at the device one. As the fruit of years of work and experience on this phenomenon, we formalize here the concept of the multiscale understanding of SCO. Clearly, the deflagration generated by the initial impressive atomic modification on all the physical scales of the solid must be understood in terms of structure-properties relationships that fit together, like Russian dolls, and propagate according to a kind of domino effect. Each scale can both give different and independent consequences from those of the other scales but at the same time can influence those of a larger or smaller scale, the whole being imperatively to take into account. The concept appears well illustrated by the volume modification, always the same at the atomic level but drastically different and adaptable, in amplitude and sense, at any other physical scale. This approach results in a much wider range of potential applications than the atomic level alone initially suggests, including one serious path to shape memory materials.

12.
Chemistry ; 26(69): 16286-16290, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-32648612

ABSTRACT

Switchable materials are increasingly considered for implementation in devices or multifunctional composites leading to a strong need in terms of reliable synthetic productions of well-defined objects. Here, an innovative and robust template-free continuous process was developed to synthesize nanoparticles of a switchable coordination polymer, including the use of supercritical CO2 , aiming at both quenching the particle growth and drying the powder. This all-in-one process offers a 12-fold size reduction in a few minutes while maintaining the switching properties of the selected spin crossover coordination polymer.

13.
Chemistry ; 26(57): 12927-12930, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-32428382

ABSTRACT

The current craze for research around the spin crossover phenomenon can be justified to some extent by the mechanical properties due to the decrease of volume associated with the transition of the metal ion from the HS state to the LS state. As demonstrated here, the molecular complex [Fe(PM-pBrA)2 (NCS)2 ] exhibits, on the contrary, an increase of the unit-cell volume from HS to LS. This counter-intuitive and unprecedented behavior that concerns both the thermal and the photoexcited spin conversions is revealed by a combination of single-crystal and powder X-ray diffraction complemented by magnetic measurements. Interestingly, this abnormal volume change appears concomitant with the wide rotation of a phenyl ring which induces a drastic modification, though reversible, of the structural packing within the crystal. In addition, the light-induced HS state obtained through the Light-Induced Excited Spin-State Trapping shows a remarkably high relaxation temperature, namely T(LIESST), of 109 K, one of the highest so far reported. The above set of quite unusual characteristics opens up new fields of possibilities within the development of spin crossover materials.

14.
Chem Sci ; 12(3): 1007-1015, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-34163867

ABSTRACT

Crystal packing energy calculations are applied to the [Fe(PM-L)2(NCS)2] family of spin crossover (SCO) complexes (PM-L = 4-substituted derivatives of the N-(2-pyridylmethylene)-4-aminobiphenyl ligand) with the aim of relating quantitatively the cooperativity of observed SCO transitions to intermolecular interactions in the crystal structures. This approach reveals a linear variation of the transition abruptness with the sum of the magnitudes of the interaction energy changes within the first molecular coordination sphere in the crystal structure. Abrupt transitions are associated with the presence of significant stabilising and destabilising changes in intermolecular interaction energies. While the numerical trend established for the PM-L family does not directly extend to other classes of SCO complex in which the intermolecular interactions may be very different, a plot of transition abruptness against the range of interaction energy changes normalised by the largest change shows a clustering of complexes with similar transition abruptness. The changes in intermolecular interactions are conveniently visualised using energy difference frameworks, which illustrate the cooperativity pathways of an SCO transition.

15.
J Am Chem Soc ; 141(47): 18759-18770, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31687818

ABSTRACT

Treatment of Fe[BF4]2·6H2O with 4,6-di(pyrazol-1-yl)-1H-pyrimid-2-one (HL1) or 4,6-di(4-methylpyrazol-1-yl)-1H-pyrimid-2-one (HL2) affords solvated crystals of [{FeIII(OH2)6}⊂FeII8(µ-L)12][BF4]7 (1, HL = HL1; 2, HL = HL2). The centrosymmetric complexes contain a cubic arrangement of iron(II) centers, with bis-bidentate [L]- ligands bridging the edges of the cube. The encapsulated [Fe(OH2)6]3+ moiety templates the assembly through 12 O-H···O hydrogen bonds to the [L]- hydroxylate groups. All four unique iron(II) ions in the cages are crystallographically high-spin at 250 K, but they undergo a gradual high → low spin-crossover on cooling, which is predominantly centered on one iron(II) site and its symmetry-related congener. This was confirmed by magnetic susceptibility data, light-induced excited spin state trapping (LIESST) effect measurements, and, for 1, Mössbauer spectroscopy and diffuse reflectance data. The clusters are stable in MeCN solution, and 1 remains high-spin above 240 K in that solvent. The cubane assembly was not obtained from reactions using other iron(II) salts or 4,6-di(pyrazol-1-yl)pyrimidine ligands, highlighting the importance of hydrogen bonding in templating the cubane assembly.

16.
Angew Chem Int Ed Engl ; 58(34): 11811-11815, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31233272

ABSTRACT

Molecular magnetic switches are expected to form the functional components of future nanodevices. Herein we combine detailed (photo-) crystallography and magnetic studies to reveal the unusual switching properties of an iron(III) complex, between low (LS) and high (HS) spin states. On cooling, it exhibits a partial thermal conversion associated with a reconstructive phase transition from a [HS-HS] to a [LS-HS] phase with a hysteresis of 25 K. Photoexcitation at low temperature allows access to a [LS-LS] phase, never observed at thermal equilibrium. As well as reporting the first iron(III) spin crossover complex to exhibit reverse-LIESST (light-induced excited spin state trapping), we also reveal a hidden hysteresis of 30 K between the hidden [LS-LS] and [HS-LS] phases. Moreover, we demonstrate that FeIII spin-crossover (SCO) complexes can be just as effective as FeII systems, and with the advantage of being air-stable, they are ideally suited for use in molecular electronics.

17.
Dalton Trans ; 47(41): 14741-14750, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30284572

ABSTRACT

The purpose of this work is to study the influence of the substitution of Fe(ii) by Mn(ii) on the spin crossover behaviour of [FexMn1-x(L222N3O2)(CN)2]·H2O solid solutions where L222N3O2 is a macrocyclic ligand = 2,13-dimethyl-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]-octadeca-1(18),2,12,14,16-pentaene. The pure Fe(ii) complex is known to present a change of the coordination number from 7 at high temperature to 6 at low temperature. The target of the solid solution study was to investigate the effect of metal dilution on this coordination change. We have then measured the thermal spin crossover features as well as the metastable HS state lifetime generated by rapid thermal quenching, which was probed through the determination of the T(TIESST) value. A discussion of the spin-state as a function of temperature is given based on the phase diagram of this series and based on the investigation of the crystal structure of the [Mn(L222N3O2)(CN)2]·H2O complex and its comparison with the published [Fe(L222N3O2)(CN)2]·H2O master compound.

18.
Inorg Chem ; 57(19): 12338-12346, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30207469

ABSTRACT

We present here a novel example of spin crossover phenomenon on a Fe(II) one-dimensional chain with unusual N5S coordination sphere. The [{Fe(tpc-OMe)(NCS)(µ-NCS)} n] (1) compound was prepared using the tridentate tpc-OMe ligand (tpc-OMe = tris(2-pyridyl)methoxymethane), FeCl2·4H2O, and the KSCN salt. Crystallographic investigations revealed that the Fe(II) ions are connected by a single bridging NCS- ligand (µ-κN:κS-SCN coordination mode) to afford a zigzag neutral chain running along the [010] direction, in which the thiocyanato bridging groups adopt a cis head-to-tail configuration. The (N5S) metal environment arises from one thiocyanato-κS and two thiocyanato-κN ligands and from three pyridine of the fac-tpc-OMe tripodal ligand. This compound presents a unique extension of Fe(II) binuclear complexes into linear chains built on similar tripodal ligands and bridging thiocyanate anions. Compound 1 shows a spin crossover (SCO) behavior which has been evidenced by magnetic, calorimetric, and structural investigations, revealing a sharp cooperative spin transition with a transition temperature of ca. 199 K. Temperature scan rate studies revealed a very narrow hysteresis loop (∼1 K wide). Photoswitching of this compound was also performed, evidencing a very fast relaxation process at low temperature. Among other factors, the linearity of the N-bound terminal thiocyanato ligand appears as the main structural characteristic at the origin of the presence of the SCO transition in compound 1 and in the two others Fe(II) previous systems involving thiocyanato-bridges and tripodal tris(2-pyridyl)methane ligands.

19.
Inorg Chem ; 57(17): 11068-11076, 2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30113168

ABSTRACT

In this study we exploit the flexible nature of porous coordination polymers (PCPs) with integrated spin crossover (SCO) properties to manipulate the multistability of spin-state switching profiles. We previously reported the two-dimensional Hofmann-type framework [Fe(thtrz)2Pd(CN)4]·EtOH,H2O (1·EtOH,H2O), N-thiophenylidene-4 H-1,2,4-triazol-4-amine), displaying a distinctive two-step SCO profile driven by extreme elastic frustration. Here, we reveal a reversible release mechanism for this elastic frustration via stepwise guest removal from the parent phase (1·EtOH,H2O → 1·H2O → 1·Ø). Parallel variable temperature structural and magnetic susceptibility measurements reveal a synergistic framework flexing and "on-off" switching of multistep SCO character concomitant with the onset of guest evacuation. In particular, the two-step SCO properties in 1·EtOH,H2O are deactivated such that both the partially solvated (1·H2O) and desolvated (1·Ø) phases show abrupt and hysteretic one-step SCO behaviors with differing transition temperatures (1·H2O: T1/2↓: 215 T1/2↑: 235 K; 1·Ø: T1/2↓: 170 T1/2↑: 182 K). This "on-off" elastic frustration switching is also reflected in the light-induced excited spin state trapping (LIESST) properties of 1·EtOH,H2O and 1·Ø, with nonquantitative (ca. 50%, i.e., LS ↔ 1:1 HS:LS) and quantitative (ca. 100%, LS ↔ HS) photoinduced spin state conversion achieved under light irradiation (510 nm at 10 K), respectively. Conversely, the two-step SCO properties are retained in the water saturated phase 1·3H2O but with a subtle shift in transition temperatures. Comparative analysis of this and related materials reveals the distinct roles that indirect and direct guest interactions play in inducing, stabilizing, and quantifying elastic frustration and the importance of lattice flexibility in these porous framework architectures.

20.
Chemistry ; 24(55): 14760-14767, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29985534

ABSTRACT

Spin-transition compounds are coordination complexes that can present two stable or metastable high-spin and low-spin states at a given temperature (thermal hysteresis). The width of the thermal hysteresis (difference between the maximum and minimum temperature between which the compound exhibits bi-stability) depends on the interactions between the coordination complexes within the compound, and which may be modulated by the absence or presence of solvent within the structure. The new compound [Fe(3-bpp)2 ][Au(CN)2 ]2 (1, 3-bpp=2,6-di-(1H-pyrazol-3-yl)pyridine) was synthesized and its properties were compared with those of the solvated compound [Fe(3-bpp)2 ][Au(CN)2 ]2 ⋅2 H2 O (1.H2 O) already described. 1 has a two-steps thermal hysteresis of 45 K, in contrast to the compound 1.H2 O which exhibits a gradual conversion without hysteresis. This hysteretic transition is accompanied by a reversible reconstructive structural transition and twinning. This stepped behaviour is also observed in the photomagnetic properties despite the low efficiency of photoswitching. Single-crystal photocrystallographic investigations confirm this low conversion, which we attributed to the high energy cost to form the high-spin structure, whose symmetry differs from that of the low-spin phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...