Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Toxicol ; 93(10): 2849-2862, 2019 10.
Article in English | MEDLINE | ID: mdl-31428841

ABSTRACT

Human biomonitoring provides information about chemicals measured in biological matrices, but their interpretation remains uncertain because of pharmacokinetic (PK) interactions. This study examined the PKs in blood from Long-Evans rats after a single oral dose of 0.4 mg/kg bw of each pesticide via a mixture of the 17 pesticides most frequently measured in humans. These pesticides are ß-endosulfan; ß-hexachlorocyclohexane [ß-HCH]; γ-hexachlorocyclohexane [γ-HCH]; carbofuran; chlorpyrifos; cyhalothrin; cypermethrin; diazinon; dieldrin; diflufenican; fipronil; oxadiazon; pentachlorophenol [PCP]; permethrin; 1,1-dichloro-2,2bis(4-chlorophenyl)ethylene [p,p'-DDE]; 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane [p,p'-DDT]; and trifluralin. We collected blood at 10 min to 48-h timepoints in addition to one sample before gavage (for a control). We used GS-MS/MS to measure the pesticide (parents and major metabolites) concentrations in plasma, determined the PK parameters from 20 sampling timepoints, and analyzed the food, litter, and cardboard in the rats' environment for pesticides. We detected many parents and metabolites pesticides in plasma control (e.g., diethyl phosphate [DEP]; PCP; 3-phenoxybenzoic acid [3-PBA]; 3,5,6-trichloro-2-pyridinol [TCPy], suggesting pre-exposure contamination. The PK values post-exposure showed that the AUC0-∞ and Cmax were highest for TCPy and PCP; ß-endosulfan, permethrin, and trifluralin presented the lowest values. Terminal T1/2 and MRT for γ-HCH and ß-HCH ranged from 74.5 h to 117.1 h; carbofuran phenol presented the shortest values with 4.3 h and 4.8 h. These results present the first PK values obtained through a realistic pattern applied to a mixture of 17 pesticides to assess exposure. This study also highlights the issues of background exposure and the need to work with a relevant mixture found in human matrices.


Subject(s)
Environmental Exposure/analysis , Environmental Monitoring/methods , Environmental Pollutants/analysis , Pesticides/pharmacokinetics , Administration, Oral , Animals , Biological Monitoring , Chromatography, Gas , Female , Humans , Rats , Rats, Long-Evans , Tandem Mass Spectrometry
2.
Arch Toxicol ; 91(8): 2813-2825, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28011991

ABSTRACT

Urine and plasma have been used to date for the biomonitoring of exposure to pollutants and are still the preferred fluids for this purpose; however, these fluids mainly provide information on the short term and may present a high level of variability regarding pesticide concentrations, especially for nonpersistent compounds. Hair analysis may provide information about chronic exposure that is averaged over several months; therefore, this method has been proposed as an alternative to solely relying on these fluids. Although the possibility of detecting pesticides in hair has been demonstrated over the past few years, the unknown linkage between exposure and pesticides concentration in hair has limited the recognition of this matrix as a relevant tool for assessing human exposure. Based on a rat model in which there was controlled exposure to a mixture of pesticides composed of lindane, ß-hexachlorocyclohexane, ß-endosulfan, p,p'-DDT, p,p'-DDE, dieldrin, pentachlorophenol, diazinon, chlorpyrifos, cyhalothrin, permethrin, cypermethrin, propiconazole, fipronil, oxadiazon, diflufenican, trifluralin, carbofuran, and propoxur, the current work demonstrates the association between exposure intensity and resulting pesticide concentration in hair. We also compared the results obtained from a hair analysis to urine and plasma collected from the same rats. Hair, blood, and urine were collected from rats submitted to 90-day exposure by gavage to the aforementioned mixture of common pesticides at different levels. We observed a linear relationship between exposure intensity and the concentration of pesticides in the rats' hair (R Pearson 0.453-0.978, p < 0.01). A comparison with results from urine and plasma samples demonstrated the relevance of hair analysis and, for many chemicals, its superiority over using fluids for differentiating animals from different groups and for re-attributing animals to their correct groups of exposure based on pesticide concentrations in the matrix. Therefore, this study strongly supports hair analysis as a reliable tool to be used during epidemiological studies to investigate exposure-associated adverse health effects.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants/analysis , Hair/chemistry , Pesticides/analysis , Animals , Environmental Exposure/analysis , Environmental Pollutants/pharmacokinetics , Female , Pesticides/pharmacokinetics , Rats , Rats, Long-Evans , Reproducibility of Results
3.
Anal Bioanal Chem ; 408(13): 3601-12, 2016 May.
Article in English | MEDLINE | ID: mdl-26968562

ABSTRACT

Although the relationship between chemical intake and resulting concentration in hair remains incompletely elucidated, the transfer from blood to hair bulb living cells is generally considered the main route of incorporation. The present work investigated the correlation between blood and hair concentration of 23 pesticides/metabolites from different chemical classes in rats submitted to chronic controlled exposure. Long-Evans rats were administered pesticides by gavage three times per week over a 90-day period. After hair sample decontamination, pulverization, and extraction, compounds were analyzed by gas chromatography tandem mass spectrometry (GC-MS/MS). Blood was collected at sacrifice, immediately turned into plasma, and analyzed after extraction for the same compounds by GC-MS/MS. The data obtained for all the investigated compounds demonstrated significant association between plasma and hair concentrations (P value of 2.97E-45 and R(Pearson) of 0.875), with the exception of three outliers. For all the target compounds, water solubility, lipophilicity, molecular weight, and charge were therefore investigated in order to understand the role of these parameters in outliers' specific behavior. Although a possible change in the charge through the transfer from blood to hair might be suspected for two outliers, on the whole the physicochemical parameters investigated here did not seem to influence incorporation of chemicals into hair. Our results support that the concentration of chemicals in hair mainly depends on the respective concentration in plasma and suggest that for most compounds, the transfer from blood to hair would not represent a limiting step in the incorporation.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Hair/chemistry , Pesticides/analysis , Tandem Mass Spectrometry/methods , Animals , Limit of Detection , Pesticides/blood , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...