Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Vet Sci ; 11: 1392413, 2024.
Article in English | MEDLINE | ID: mdl-38840639

ABSTRACT

Siamese fishing fish (Betta splendens) or betta are usually subjected to a special method of transportation for global trade, where they are individually conveyed in plastic bags containing just enough water to cover their bodies. This study aimed to investigate the effects of transportation on their stress response by measuring hematological values, stress hormone levels, glucose levels, and stress-related gene expression. Betta fish (average body weight 1.91 ± 0.42 g; n = 30) were exposed to simulated transport in a water volume of 40 mL for 12, 24, and 48 h. Baseline levels (pre-transport) were measured prior to the experiment. The control group was transported using water without adding clove oil. Two treatment groups were transported using water with the addition of 1 and 3 mg/L concentrations of clove oil, respectively. The results revealed that transportation can be a factor that affects water quality. The pH and dissolved oxygen levels were significantly lower than baseline, while nitrite and total ammonia concentrations significantly increased. Correlating to the stress responses, significantly increasing total red blood cell counts, plasma cortisol levels, and up-regulating the expression of stress-related genes, including HSP70, GR, MR, and HIF-1α. The addition of 1 mg/L clove oil was found to reduce stress during the transport simulation, as evidenced by a reduction in these stress parameters. Conversely, increasing the concentration of clove oil to 3 mg/L significantly increased plasma cortisol after 12 h of simulated transport, and up-regulated GR, MR, and HIF-1α expression. This study revealed that the transport process can stimulates stress in betta fish but adding a concentration of 1 mg/L clove oil to the transport water could mitigate this stress response and promote animal welfare during their transportation.

2.
PLoS One ; 19(5): e0302584, 2024.
Article in English | MEDLINE | ID: mdl-38709757

ABSTRACT

The North African catfish (Clarias gariepinus) is a significant species in aquaculture, which is crucial for ensuring food and nutrition security. Their high adaptability to diverse environments has led to an increase in the number of farms that are available for their production. However, long-term closed breeding adversely affects their reproductive performance, leading to a decrease in production efficiency. This is possibly caused by inbreeding depression. To investigate the root cause of this issue, the genetic diversity of captive North African catfish populations was assessed in this study. Microsatellite genotyping and mitochondrial DNA D-loop sequencing were applied to 136 catfish specimens, collected from three populations captured for breeding in Thailand. Interestingly, extremely low inbreeding coefficients were obtained within each population, and distinct genetic diversity was observed among the three populations, indicating that their genetic origins are markedly different. This suggests that outbreeding depression by genetic admixture among currently captured populations of different origins may account for the low productivity of the North African catfish in Thailand. Genetic improvement of the North African catfish populations is required by introducing new populations whose origins are clearly known. This strategy should be systematically integrated into breeding programs to establish an ideal founder stock for selective breeding.


Subject(s)
Catfishes , DNA, Mitochondrial , Genetic Variation , Inbreeding , Microsatellite Repeats , Animals , Aquaculture , Catfishes/genetics , DNA, Mitochondrial/genetics , Genotype , Microsatellite Repeats/genetics , Thailand
3.
Genomics ; 116(4): 110868, 2024 07.
Article in English | MEDLINE | ID: mdl-38795738

ABSTRACT

Hybrid sterility, a hallmark of postzygotic isolation, arises from parental genome divergence disrupting meiosis. While chromosomal incompatibility is often implicated, the underlying mechanisms remain unclear. This study investigated meiotic behavior and genome-wide divergence in bighead catfish (C. macrocephalus), North African catfish (C. gariepinus), and their sterile male hybrids (important in aquaculture). Repetitive DNA analysis using bioinformatics and cytogenetics revealed significant divergence in satellite DNA (satDNA) families between parental species. Notably, one hybrid exhibited successful meiosis and spermatozoa production, suggesting potential variation in sterility expression. Our findings suggest that genome-wide satDNA divergence, rather than chromosome number differences, likely contributes to meiotic failure and male sterility in these catfish hybrids.


Subject(s)
Catfishes , DNA, Satellite , Hybridization, Genetic , Meiosis , Animals , Catfishes/genetics , Male , DNA, Satellite/genetics , Infertility, Male/genetics , Infertility, Male/veterinary , Genome , North African People
4.
Vaccines (Basel) ; 11(12)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38140158

ABSTRACT

To investigate early immune responses and explore the optimal vaccination periods, Nile tilapia at 1, 7, 14, 21, 28, 35, and 42 days after yolk sac collapse (DAYC) were immersed in formalin-killed Streptococcus agalactiae vaccine (FKV-SA). A specific IgM was first detected via ELISA in the 21 DAYC larvae (0.108 g) at 336 h after vaccination (hav), whereas in the 28-42 DAYC larvae (0.330-0.580 g), the specific IgM could be initially detected at 24 hav. qRT-PCR analysis of the TCRß, CD4, MHCIIα, IgHM, IgHT, and IgHD genes in 21-42 DAYC larvae immunized with the FKV-SA immersion route for 24, 168, and 336 hav revealed that the levels of most immune-related genes were significantly higher in the vaccinated larvae at all DAYCs than in the control larvae (p < 0.05) at 336 hav. Immunohistochemistry demonstrated stronger IgM signals in the gills, head kidney, and intestine tissues at 21, 28, and 35 DAYC in all vaccinated larvae compared with the control. Interestingly, at all DAYCs, FKV-SA larvae exhibited significantly higher survival rates and an increased relative percent survival (RPS) than the control after challenge with viable S. agalactiae, particularly in larvae that were immunized with FKV-SA at 168 and 336 hav (p < 0.05).

5.
Genomics Inform ; 21(3): e39, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37813635

ABSTRACT

DNA barcoding without assessing reliability and validity causes taxonomic errors of species identification, which is responsible for disruptions of their conservation and aquaculture industry. Although DNA barcoding facilitates molecular identification and phylogenetic analysis of species, its availability in clariid catfish lineage remains uncertain. In this study, DNA barcoding was developed and validated for clariid catfish. 2,970 barcode sequences from mitochondrial cytochrome c oxidase I (COI) and cytochrome b (Cytb) genes and D-loop sequences were analyzed for 37 clariid catfish species. The highest intraspecific nearest neighbor distances were 85.47%, 98.03%, and 89.10% for COI, Cytb, and D-loop sequences, respectively. This suggests that the Cytb gene is the most appropriate for identifying clariid catfish and can serve as a standard region for DNA barcoding. A positive barcoding gap between interspecific and intraspecific sequence divergence was observed in the Cytb dataset but not in the COI and D-loop datasets. Intraspecific variation was typically less than 4.4%, whereas interspecific variation was generally more than 66.9%. However, a species complex was detected in walking catfish and significant intraspecific sequence divergence was observed in North African catfish. These findings suggest the need to focus on developing a DNA barcoding system for classifying clariid catfish properly and to validate its efficacy for a wider range of clariid catfish. With an enriched database of multiple sequences from a target species and its genus, species identification can be more accurate and biodiversity assessment of the species can be facilitated.

6.
J Fish Dis ; 46(12): 1391-1401, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37723600

ABSTRACT

Streptococcus iniae is a bacterial pathogen that causes streptococcosis, leading to significant losses in fish aquaculture globally. This study reported a newly developed probe-based quantitative polymerase chain reaction (qPCR) method for the detection of S. iniae. The primers and probes were designed to target the lactate oxidase gene. The optimized method demonstrated a detection limit of 20 copies per reaction and was specific to S. iniae, as evidenced by no cross-reactivity when assayed against genetic materials extracted from 23 known aquatic animal pathogens, and fish samples infected with Streptococcus agalactiae or Streptococcus dysgalactiae. To validate the newly developed qPCR protocol with field samples, fish specimens were systematically investigated following the Food and Agriculture Organization of the United Nations & Network of Aquaculture Centres in Asia-Pacific three diagnostic levels approach, which integrated basic and advanced techniques for disease diagnosis, including observation of gross signs (level I), bacterial isolation (level II), qPCR and 16S rDNA sequencing (level III). The result showed that 7/7 affected farms (three Asian seabass farms and four tilapia farms) experiencing clinical signs of streptococcosis were diagnosed positive for S. iniae. qPCR assays using DNA extracted directly from fish tissue detected S. iniae in 11 out of 36 fish samples (30.6%), while 24 out of 36 samples (66.7%) tested positive after an enrichment step, including apparently healthy fish from affected farms. Bacterial isolation of S. iniae was only successful in a proportion of clinically diseased fish but not in healthy-looking fish from the same farm. Overall, the newly developed qPCR protocol combined with enrichment would be a useful tool for the diagnosis and surveillance of S. iniae infections in fish populations, thereby aiding in the disease control and prevention.


Subject(s)
Fish Diseases , Streptococcal Infections , Tilapia , Animals , Streptococcus iniae , Fish Diseases/microbiology , Streptococcus agalactiae/genetics , Streptococcal Infections/diagnosis , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Tilapia/microbiology
7.
Fish Shellfish Immunol ; 138: 108802, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37178986

ABSTRACT

Early disease prevention by vaccination requires understanding when fry fish develop specific immunity to a given pathogen. In this research, we explored the immune responses of Asian seabass (Lates calcarifer) at the stages of 35- and 42- days post-hatching (dph) to an immersive heat-killed Streptococcus iniae (Si) vaccine to determine whether fish can produce specific antibodies against the pathogen. The vaccinated fish of each stage (V35 and V42) were immersed with the Si vaccine at 107 CFU/ml for 3 h, whereas the control groups (C35 and C42) were immersed with tryptic soy broth (TSB) in the same manner. Specific antibodies were measured by enzyme-linked immunosorbent assay (ELISA) before and post-immunization (i.e., 0, 7, and 14 days post-immunization, dpi). Expression of innate (TNFα and IL-1ß) and adaptive (MHCI, MHCII, CD4, CD8, IgM-like, IgT-like, and IgD-like) immune-related genes were evaluated at the same time points with the addition of 1 dpi. The results showed that a subset of immunized fish from both V35 and V42 fry could elicit specific antibodies (IgM) against Si at 14 dpi. All tested innate and adaptive immune genes upregulated at 7 dpi among fish in V35 group. Interestingly, 42 dph fish appeared to respond to the Si vaccine faster than that of 35 dph, as a significant increase in transcripts was observed in CD4, IL-1ß, IgM-like, and IgD-like at 1 dpi; and specific antibody titers of some fish, although not all, were higher than a threshold (p = 0.05) since 7 dpi. In conclusion, this study reveals that 35-42 dph Asian seabass fry can elicit specific immunity to Si immersion vaccine, suggesting that early vaccination of 35 dph fry Asian seabass is feasible.


Subject(s)
Fish Diseases , Perciformes , Animals , Streptococcus iniae , Vaccines, Inactivated , Hot Temperature , Immersion , Immunization , Vaccination/veterinary , Bacterial Vaccines , Immunoglobulin M , Fish Diseases/prevention & control
8.
J Fish Dis ; 46(6): 597-610, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36708284

ABSTRACT

Streptococcosis caused by Streptococcus agalactiae and S. iniae is a significant problem that affects the success of tilapia aquaculture industries worldwide. In this critical review, we summarize the applicable practical strategies which may effectively enhance the world tilapia aquaculture development. Recently, the effect of vaccination and selective breeding programmes has been recognized as valuable tools to control the target disease and other consequent negative impacts caused by chemical and drug application. Advances in sequencing and molecular technologies are vital helpful factors with which to develop robust vaccines and increase the selective breeding programme's precision against streptococcosis. The genomic selection for streptococcosis-resistant tilapia strains and crucial genomic application for genomics' contribution to the development of novel Streptococcus vaccine, comparative genomics approach identifying vaccine candidates by reverse vaccinology, and next-generation vaccine design were described. Information from our review is encouraging for practical implementation of the development of vaccination and genomic selection in tilapia for streptococcosis resistance, which may be vital factors to sustain the world tilapia aquaculture industry effectively.


Subject(s)
Cichlids , Fish Diseases , Streptococcal Infections , Streptococcal Vaccines , Tilapia , Animals , Fish Diseases/prevention & control , Streptococcal Infections/prevention & control , Streptococcal Infections/veterinary , Streptococcus agalactiae/genetics , Genomics
9.
Front Vet Sci ; 9: 847977, 2022.
Article in English | MEDLINE | ID: mdl-35359670

ABSTRACT

The present study describes a simultaneous infection of a novel Chlamydia-like organism (CLO) with a Myxozoa parasite, Henneguya sp. in snakeskin gourami Trichopodus pectoralis in Thailand. A new CLO is proposed "Candidatus Piscichlamydia trichopodus" (CPT) based on 16S rRNA phylogenetic analysis. Systemic intracellular CPT infection was confirmed by histological examination, in situ hybridization, PCR assay, and sequencing of 16S rRNA. This novel pathogen belongs to the order Chlamydiales but differs in certain aspects from other species. The histopathological changes associated with CPT infection were different from the typical pathological lesions of epitheliocystis caused by previously known CLO. Unlike other CLO, CPT localized in the connective tissue rather than in the epithelial cells and formed smaller clumps of intracellular bacteria that stained dark blue with hematoxylin. On the other hand, typical myxospores of the genus Henneguya with tails were observed in the gill sections. Infection with Henneguya sp. resulted in extensive destruction of the gill filaments, most likely leading to respiratory distress. Due to the frequency of co-infections and the unavailability of culture methods for CLO and Henneguya sp., it was difficult to determine which pathogens were directly responsible for the associated mortality. However, co-infections may increase the negative impact on the host and the severity of the disease. Given the commercial importance of the snakeskin gourami and its significant aquaculture potential, the findings of this study are important for further studies on disease prevention.

10.
Fish Shellfish Immunol ; 92: 209-215, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31181340

ABSTRACT

Disease outbreak is a major obstruction for intensive aquaculture worldwide. One of the promising solutions is genetic improvement by selective breeding, providing that a sufficient proportion of additive genetic variance (measured by heritability-h2) of disease resistance traits exists. In addition, immunity traits are of interest as potential indirect targeted traits for disease resistance. In this study, the genetic parameters of resistance to Aeromonas hydrophila were reported for the first time in the bighead catfish, Clarias macrocephalus Günther, 1864 which is an important parental species for the production of the commercially important hybrid C. macrocephalus × C. gariepinus. The analyses were performed on 736 data records obtained from 74 full-sib families (31 half-sib families) produced by factorial mating design. The results showed that the heritability of survival rate after disease (Aeromonas hydrophila) challenge (intraperitoneal injection with 0.1 ml containing 1 × 106 CFU/ml of A. hydrophila) was low to moderate (0.05 ±â€¯0.02-0.27 ±â€¯0.15). The immune traits (bactericidal activity-BA, lysozyme activity-LA, and alternative complement activity-ACH50) had low to moderate heritability (h2BA = 0.05 ±â€¯0.02; h2LA = 0.16 ±â€¯0.04; h2ACH50 = 0.31 ±â€¯0.06) while heritability of hematocrit (Hct) was also low (h2Hct = 0.17 ±â€¯0.04). The results suggested the possibility to improve resistance to A. hydrophila by selection, while the possibility to use immunity traits as indirect selection criteria for disease resistance is still unclear.


Subject(s)
Catfishes/genetics , Fish Diseases/immunology , Heredity/immunology , Immunity, Innate/genetics , Aeromonas hydrophila/physiology , Animals , Catfishes/immunology , Disease Resistance/genetics , Fish Diseases/genetics , Gram-Negative Bacterial Infections/genetics , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary
11.
Fish Physiol Biochem ; 44(1): 119-135, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28894993

ABSTRACT

Growth hormone (GH) transgenic (T) coho salmon consistently show remarkably enhanced growth associated with increased appetite and food consumption compared to non-transgenic wild-type (NT) coho salmon. To improve understanding of the mechanism by which GH overexpression mediates food intake and digestion in T fish, feed intake and gastric evacuation rate (over 7 days) were measured in size-matched T and NT coho salmon. T fish displayed greatly enhanced feed intake levels (~ 2.5-fold), and more than 3-fold increase in gastric evacuation rates relative to NT coho salmon. Despite the differences in feed intake, no differences were noted in the time taken from first ingestion of food to stomach evacuation between genotypes. These results indicate that enhanced feed intake is coupled with an overall increased processing rate to enhance energy intake by T fish. To further investigate the molecular basis of these responses, we examined the messenger RNA (mRNA) levels of several genes in appetite- and gastric-regulation pathways (Agrp1, Bbs, Cart, Cck, Glp, Ghrelin, Grp, Leptin, Mc4r, Npy, and Pomc) by qPCR analyses in the brain (hypothalamus, preoptic area) and pituitary, and in peripheral tissues associated with digestion (liver, stomach, intestine, and adipose tissue). Significant increases in mRNA levels were found for Agrp1 in the preoptic area (POA) of the brain, and Grp and Pomc in pituitary for T coho salmon relative to NT. Mch and Npy showed significantly lower mRNA levels than NT fish in all brain tissues examined across all time-points after feeding. Mc4r and Cart for T showed significantly lower mRNA levels than NT in the POA and hypothalamus, respectively. In the case of peripheral tissues, T fish had lower mRNA levels of Glp and Leptin than NT fish in the intestine and adipose tissue, respectively. Grp, Cck, Bbs, Glp, and Leptin in stomach, adipose tissue, and/or intestine showed significant differences across the time-points after feeding, but Ghrelin showed no significant difference between T and NT fish in all tested tissues.


Subject(s)
Animals, Genetically Modified , Gastrointestinal Transit/genetics , Growth Hormone/genetics , Oncorhynchus kisutch/genetics , Animals , Digestion/physiology , Feeding Behavior/physiology , Gastrointestinal Transit/physiology , Genotype , Growth Hormone/metabolism , Oncorhynchus kisutch/physiology
12.
Mar Biotechnol (NY) ; 19(1): 36-48, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28181037

ABSTRACT

To enhance understanding of triploid gene expression, the transcriptome information from bighead catfish (Clarias macrocephalus Günther, 1864) was studied using the paired-end Illumina HiSeq™ 2000 sequencing platform. In total, 68,227,832 raw reads were generated from liver tissues and 53,149 unigenes were assembled, with an average length of 765 bp and N50 length of 1283 bp. Of these unigenes, 33,428 (62.89%) could be annotated according to their homology with matches in the NCBI non-redundant (Nr), NCBI nucleotide (Nt), Swiss-Prot, Clusters of Orthologous Groups (COG), gene ontology (GO), or Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Relative expression of liver genes between diploid and triploid bighead catfish revealed more than 90% of the annotated unigenes similarly expressed, regardless of ploidy, whereas 362 upregulated and 83 downregulated with at least a twofold change in triploid relative to diploid. Quantitative real-time PCR of 15 differentially expressed growth-related genes showed consistency between the expression profiles of those genes with the results from RNA-seq analysis. Our results showed that genes in C. macrocephalus liver responded independently to triploidy with the majority showing similar expression levels between diploid and triploid (a dosage compensation phenomenon). The underlying mechanism of the varying gene expression patterns was discussed. Notably, 5 of the top 20 upregulated genes associated with stress response and thus may reflect stress caused by triploidy. The present study adds a substantial contribution to the sequence data available for C. macrocephalus and hence provides valuable resources for further studies. Furthermore, it gives information that may enhance understanding of triploid physiology.


Subject(s)
Catfishes/genetics , Diploidy , Fish Proteins/genetics , Gene Expression Regulation, Developmental , Genome , Transcriptome , Triploidy , Animals , Catfishes/growth & development , Contig Mapping , Female , Gene Expression Profiling , Gene Ontology , High-Throughput Nucleotide Sequencing , Male , Molecular Sequence Annotation
SELECTION OF CITATIONS
SEARCH DETAIL
...