Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Gene Med ; 18(1-3): 3-15, 2016.
Article in English | MEDLINE | ID: mdl-26519353

ABSTRACT

BACKGROUND: To optimize synthetic gene delivery systems, there is a need to develop more efficient lipid formulations. Most cationic lipid formulations contain 'helper' neutral lipids because of their ability to increase DNA delivery, in particular by improving endosomal escape of DNA molecules via the pH-buffering effect of protonatable groups and/or fusion with the lipid bilayer of endosomes. METHODS: We evaluated the influence of the linker structure between the two oleyl chains in the helper lipid on transfection efficiency in cell lines, as well as in primary cells (hepatocytes/cardiomyocytes). We reported the synthesis of two new pH-buffering imidazole helper lipids characterized by a polar headgroup containing one (compound 6) or two (compound 5) imidazole groups and two oleyl chains linked by an amide group. We studied their association with the aminoglycoside lipidic derivative dioleylsuccinylparomomycin (DOSP), which contains two oleyl chains linked to the aminoglycoside polar headgroup via an amide function. We compared the morphology and transfection properties of such binary liposomes of DOSP/5 and DOSP/6 with those of liposomes combining DOSP with another imidazole-based dioleyl helper lipid (MM27) in which a phosphoramido group acts as a linker between the two oleyl chains and imidazole function. RESULTS: The phosphoramido linker in the helper lipid induces a major difference in terms of morphology and resistance to decomplexation at physical pH for DOSP/helper lipid complexes. CONCLUSIONS: This hybrid dioleyl linker composition of DOSP/MM27 led to higher transfection efficiency in cell lines and in primary cells compared to complexes with homogeneous dioleyl linker.


Subject(s)
Imidazoles/chemistry , Lipids/chemistry , Liposomes/chemistry , Phosphoramides/chemistry , Transfection/methods , Animals , Cations/chemistry , DNA/chemistry , Endosomes/metabolism , HEK293 Cells , Hepatocytes , Humans , Imidazoles/chemical synthesis , Lipids/chemical synthesis , Mice , Microscopy, Electron, Transmission , Myoblasts , Primary Cell Culture , Rats
2.
Mol Ther Nucleic Acids ; 4: e244, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26102064

ABSTRACT

The intracellular delivery of biologically active protein represents an important emerging strategy for both fundamental and therapeutic applications. Here, we optimized in vitro delivery of two functional proteins, the ß-galactosidase (ß-gal) enzyme and the anti-cytokeratin8 (K8) antibody, using liposome-based formulation. The guanidinium-cholesterol cationic lipid bis (guanidinium)-tren-cholesterol (BGTC) (bis (guanidinium)-tren-cholesterol) combined to the colipid dioleoyl phosphatidylethanolamine (DOPE) (dioleoyl phosphatidylethanolamine) was shown to efficiently deliver the ß-gal intracellularly without compromising its activity. The lipid/protein molar ratio, protein amount, and culture medium were demonstrated to be key parameters affecting delivery efficiency. The protein itself is an essential factor requiring selection of the appropriate cationic lipid as illustrated by low K8 binding activity of the anti-K8 antibody using guanidinium-based liposome. Optimization of various lipids led to the identification of the aminoglycoside lipid dioleyl succinyl paromomycin (DOSP) associated with the imidazole-based helper lipid MM27 as a potent delivery system for K8 antibody, achieving delivery in 67% of HeLa cells. Cryo-transmission electron microscopy showed that the structure of supramolecular assemblies BGTC:DOPE/ß-gal and DOSP:MM27/K8 were different depending on liposome types and lipid/protein molar ratio. Finally, we observed that K8 treatment with DOSP:MM27/K8 rescues the cyclic adenosine monophosphate (cAMP)-dependent chloride efflux in F508del-CFTR expressing cells, providing a new tool for the study of channelopathies.

3.
Biochem J ; 463(3): 339-49, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25088759

ABSTRACT

The major cardiac voltage-gated sodium channel Nav1.5 associates with proteins that regulate its biosynthesis, localization, activity and degradation. Identification of partner proteins is crucial for a better understanding of the channel regulation. Using a yeast two-hybrid screen, we identified dynamitin as a Nav1.5-interacting protein. Dynamitin is part of the microtubule-binding multiprotein complex dynactin. When overexpressed it is a potent inhibitor of dynein/kinesin-mediated transport along the microtubules by disrupting the dynactin complex and dissociating cargoes from microtubules. The use of deletion constructs showed that the C-terminal domain of dynamitin is essential for binding to the first intracellular interdomain of Nav1.5. Co-immunoprecipitation assays confirmed the association between Nav1.5 and dynamitin in mouse heart extracts. Immunostaining experiments showed that dynamitin and Nav1.5 co-localize at intercalated discs of mouse cardiomyocytes. The whole-cell patch-clamp technique was applied to test the functional link between Nav1.5 and dynamitin. Dynamitin overexpression in HEK-293 (human embryonic kidney 293) cells expressing Nav1.5 resulted in a decrease in sodium current density in the membrane with no modification of the channel-gating properties. Biotinylation experiments produced similar information with a reduction in Nav1.5 at the cell surface when dynactin-dependent transport was inhibited. The present study strongly suggests that dynamitin is involved in the regulation of Nav1.5 cell-surface density.


Subject(s)
Microtubule-Associated Proteins/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Animals , Binding Sites , Dynactin Complex , HEK293 Cells , Humans , Mice, Inbred BALB C , Microtubule-Associated Proteins/genetics , Myocardium/metabolism , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Protein Structure, Tertiary , Two-Hybrid System Techniques
4.
Mol Ther Nucleic Acids ; 2: e64, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23299832

ABSTRACT

We hereby present different DNA nanocarriers consisting of new multimodular systems (MMS), containing the cationic lipid dioleylaminesuccinylparomomycin (DNA MMS DOSP), or bis (guanidinium)-tren-cholesterol (DNA MMS BGTC), and DNA lipid nanocapsules (DNA LNCs). Active targeting of the asialoglycoprotein receptor (ASGP-R) using galactose as a ligand for DNA MMS (GAL DNA MMS) and passive targeting using a polyethylene glycol coating for DNA LNCs (PEG DNA LNCs) should improve the properties of these DNA nanocarriers. All systems were characterized via physicochemical methods and the DNA payload of DNA LNCs was quantified for the first time. Afterwards, their biodistribution in healthy mice was analyzed after encapsulation of a fluorescent dye via in vivo biofluorescence imaging (BFI), revealing various distribution profiles depending on the cationic lipid used and their surface characteristics. Furthermore, the two vectors with the best prolonged circulation profile were administered twice in healthy mice revealing that the new DNA MMS DOSP vectors showed no toxicity and the same distribution profile for both injections, contrary to PEG DNA LNCs which showed a rapid clearance after the second injection, certainly due to the accelerated blood clearance phenomenon.Molecular Therapy - Nucleic Acids (2013) 2, e64; doi:10.1038/mtna.2012.56; published online 8 January 2013.

5.
Hum Gene Ther ; 23(6): 597-608, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22429072

ABSTRACT

Asthma is a chronic, inflammatory, respiratory disease caused by an abnormal reactivity against allergens. The most promising treatments for asthma are based on specific immunotherapies, but they lack efficiency and can induce deleterious side effects. Among new modalities of immunotherapy currently in development, DNA vaccination presents a promising approach, as it enables targeted immunotherapy in association with reduced allergenicity. We have developed an innovative, DNA-based vaccine against Dermatophagoides farinae 1 allergen (Der f 1), one of the allergens most commonly encountered by asthma patients in Europe. Intramuscular administration of a Der f 1-encoding plasmid formulated with the block copolymer 704 in healthy mice induced a strong humoral and cellular response with a pro-helper T cell type 1 bias. Administration of the same formulation in asthmatic mice, according to an early vaccination protocol, led to a reduction of airway hyperresponsiveness and a significant decrease in the level of inflammatory cytokines in the bronchoalveolar lavage of Der f 1-vaccinated mice.


Subject(s)
Antigens, Dermatophagoides/genetics , Arthropod Proteins/genetics , Asthma/therapy , Cysteine Endopeptidases/genetics , Nanospheres/therapeutic use , Polymers/administration & dosage , Animals , Asthma/immunology , Disease Models, Animal , Humans , Injections, Intramuscular , Mice , Mice, Inbred BALB C , Nanospheres/administration & dosage
6.
J Control Release ; 158(3): 461-9, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22226775

ABSTRACT

Cationic lipid-based nonviral gene delivery is an attractive approach for therapeutic gene transfer. Basically, gene transfection can be achieved by using synthetic vectors that compact DNA, forming cationic lipoplexes which can interact with the cell plasma membrane by electrostatic interactions. Among the basic components of any cationic lipid, the type of cationic headgroup has been shown to have a major role in transfection efficiency. We have previously reported the DNA transfection potential of vectors characterized by a kanamycin A headgroup. The encouraging transfection results obtained with these compounds prompted us to evaluate the potential of cationic lipids bearing headgroups based on other aminoglycosides. Thus, we herein report the synthesis and gene transfection properties of novel cationic lipids consisting of cholesteryl or dioleyl moieties linked, via various spacers, to paromomycin or neomycin B headgroups. Our results confirm that these new aminoglycoside-based cationic lipids are efficient for gene transfection both in vitro and into the mouse airways in vivo. We also investigated physico-chemical properties of the DNA complexes formed by this particular type of synthetic vectors in order to better understand their structure-activity relationships.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Cholesterol/administration & dosage , Framycetin/administration & dosage , Paromomycin/administration & dosage , Animals , Anti-Bacterial Agents/chemistry , Cholesterol/chemistry , Female , Framycetin/chemistry , Genes, Reporter/genetics , Green Fluorescent Proteins/genetics , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Oleic Acids/administration & dosage , Oleic Acids/chemistry , Paromomycin/chemistry , Transfection/methods
7.
Nucleic Acids Res ; 39(4): 1610-22, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20952409

ABSTRACT

Amphiphilic block copolymers have been developed recently for their efficient, in vivo transfection activities in various tissues. Surprisingly, we observed that amphiphilic block copolymers such as Lutrol® do not allow the transfection of cultured cells in vitro, suggesting that the cell environment is strongly involved in their mechanism of action. In an in vitro model mimicking the in vivo situation we showed that pre-treatment of cells with Lutrol®, prior to their incubation with DNA molecules in the presence of cationic lipid, resulted in higher levels of reporter gene expression. We also showed that this improvement in transfection efficiency associated with the presence of Lutrol® was observed irrespective of the plasmid promoter. Considering the various steps that could be improved by Lutrol®, we concluded that the nucleic acids molecule internalization step is the most important barrier affected by Lutrol®. Microscopic examination of transfected cells pre-treated with Lutrol® confirmed that more plasmid DNA copies were internalized. Absence of cationic lipid did not impair Lutrol®-mediated DNA internalization, but critically impaired endosomal escape. Our results strongly suggest that in vivo, Lutrol® improves transfection by a physicochemical mechanism, leading to cellular uptake enhancement through a direct delivery into the cytoplasm, and not via endosomal pathways.


Subject(s)
Cell Membrane/metabolism , DNA/metabolism , Polyethylene Glycols/chemistry , Transfection , Active Transport, Cell Nucleus , Animals , Biological Transport , Cell Line , Cell Nucleus/metabolism , Cytoplasm/metabolism , Endosomes/metabolism , Endosomes/ultrastructure , Female , Genes, Reporter , Humans , Lipids/chemistry , Mice , Microscopy, Electron, Transmission , Muscle Cells/metabolism , Plasmids/genetics , Promoter Regions, Genetic , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL