Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
J Mol Model ; 30(7): 198, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842625

ABSTRACT

CONTEXT: Organic halides stand as invaluable reagents with diverse applications in synthetic chemistry and various industrial processes. Despite their utility, concerns arise due to their inherent toxicity. Addressing these apprehensions, hydro-dehalogenation has emerged as a promising strategy involving the replacement of halogen atoms with hydrogen atoms to transform toxic organic halides into hydrocarbons. This study delves into the computational exploration of hydro-dehalogenation reactions of benzyl halide, mediated by frustrated Lewis pairs (FLPs), using density functional theory (DFT). The reactions entail the formation of FLP1 or FLP2 in the presence of TMP or lutidine with B(C6F5)3, respectively. This is followed by heterolytic cleavage of dihydrogen and subsequent reaction with benzyl halides. Non-covalent interaction analysis underscores the significance of π-π stacking and CH-π interactions in stabilizing transition states. Additionally, the activation strain model (ASM) dissects activation energies, revealing the substantial impact of strain energy on reaction barriers. Energy decomposition analysis (EDA) offers insights into the contributions of electrostatic, orbital, and dispersion energies to the overall attractive interaction energy. The investigation extends to hydro-dehalogenation reactions of ethyl halides, uncovering distinct mechanisms and activation barriers. This comprehensive analysis illuminates the intricacies of hydro-dehalogenation reactions, providing valuable insights into their mechanisms and paving the way for future studies in this field. METHODS: Geometry optimizations were carried out at the M06-2X/def2-SVP level of theory, which was performed using the Gaussian 16 program. Solvent-corrected single-point energies were also calculated using the polarizable continuum model (PCM) at the PCM(chloroform)-M06-2X/def2-TZVP//M06-2X/def2-SVP level of theory. The Gibbs free energy correction was determined from computations performed at the M06-2X/def2-SVP level of theory. Principal interacting orbital (PIO) analysis was conducted using the NBO 6.0 software. The nature of bonding in the respective transition state (TS) structures was analyzed using atoms-in-molecules (AIM) analyses. Additionally, the presence of non-covalent interactions (NCI) was exemplified using Multiwfn software.

2.
J Phys Chem A ; 128(19): 3864-3873, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38696762

ABSTRACT

In the realm of structural and bonding investigations within chemical systems, elucidating global minimum energy configurations stands as a paramount goal. As the systems increase in size and complexity, this pursuit becomes progressively challenging. Herein, we introduce Bonobo optimizer (BO), a metaheuristic algorithm inspired by the social and reproductive behaviors of bonobos, to the domain of chemical problem solving. Focusing on small carbon clusters, this study systematically evaluates BO's performance, showcasing its robustness and efficiency. Parametric studies highlight the algorithm's adaptability, consistently converging to global minimum structures. Rigorous statistical validation supports the results, and a comparative analysis against established global optimization algorithms underlines BO's superior efficiency. This exploration extends the applicability of BO to the optimization of atomic clusters, providing a promising avenue for future advancements in computational chemistry.

3.
Phys Chem Chem Phys ; 26(13): 9856-9866, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38497096

ABSTRACT

Noble gases (Ngs) are recognized as the least reactive elements due to their fully filled valence electronic configuration. Their reluctance to engage in chemical bond formation necessitates extreme conditions such as low temperatures, high pressures, and reagents with high reactivity. In this Perspective, we discuss our endeavours in the theoretical prediction of viable Ng complexes, emphasizing the pursuit of synthesizing them under nearly ambient conditions. Our research encompasses various bonding categories of Ng complexes and our primary aim is to comprehend the bonding mechanisms within these complexes, utilizing state-of-the-art theoretical tools such as natural bond orbital, energy decomposition, and electron density analyses. These complex types manifest distinct bonding scenarios. In the non-insertion type, the donor-acceptor interaction strength hinges on the polarizing ability of the binding atom, drawing the electron density of the Ng towards itself. In certain instances, especially with heavier Ng elements, this interaction reaches a magnitude where it can be considered a covalent bond. Conversely, in most insertion cases, the Ng prefers to share electrons to form a covalent bond on one side while interacting electrostatically on the other side. In rare cases, both bonds may be portrayed as electron-shared covalent bonds. Furthermore, a host cage serves as an excellent platform to explore the limits of achieving Ng-Ng bonds (even for helium), under high pressure.

4.
J Comput Chem ; 45(14): 1098-1111, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38261518

ABSTRACT

CO2 reduction is appealing for the long-term production of high-value fuels and chemicals. Herein, using density functional theory (DFT) based calculations, we study the CO2 reduction pathway to formic acid using aluminum hydride and phosphine derivatives. Our primary focus is on aluminum hydride derivatives, aimed at improving the efficiency of the CO2 reduction process. Substituents with σ-donating properties at the aluminum center are discovered to lower the activation barriers. We demonstrate how di-tert-butylphosphine oxide (LB-O)/di-tert-butylphosphine sulfide (LB-S)/di-tert-butylphosphanimine (LB-N) work together with aluminum hydride to facilitate CO2 reduction process and generate in-situ frustrated Lewis pairs (FLPs), such as FLP-O, FLP-S, and FLP-N. The activation strain model (ASM) analysis reveals the significance of strain energy in determining activation barriers. EDA-NOCV and PIO analyses elucidate the orbital interactions at the corresponding transition states. Furthermore, the study delves into the activation of various small molecules, such as dihydrogen, acetylene, ethylene, carbon dioxide, nitrous oxide, and acetonitrile, using those in-situ generated FLPs. The study highlights the low activation barriers and emphasizes the potential for small molecule activation in this context.

5.
ChemistryOpen ; 13(4): e202300179, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38117941

ABSTRACT

The activation of H2 by pyramidalized boron-based frustrated Lewis Pairs (FLPs) (B/E-FLP systems where "E" refers to N, P, As, Sb, and Bi) have been explored using density functional theory (DFT) based computational study. The activation pathway for the entire process is accurately characterized through the utilization of the activation strain model (ASM) of reactivity, shedding light on the underlying physical factors governing the process. The study also explores the hydrogenation process of multiple bonds with the help of B/N-FLP. The research findings demonstrate that the liberation of activated dihydrogen occurs in a synchronized, albeit noticeably asynchronous, fashion. The transformation is extensively elucidated using the activation strain model and the energy decomposition analysis. This approach suggests a co-operative double hydrogen-transfer mechanism, where the B-H hydride triggers a nucleophilic attack on the carbon atom of the multiple bonds, succeeded by the migration of the protic N-H.

6.
Molecules ; 28(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37630421

ABSTRACT

In order to examine the effect of oriented (static) electric fields (OEF) on the kinetics of some representative Suzuki-Miyaura and metal-cluster mediated reactions at ambient temperatures, density functional theory-based calculations are reported herein. Results indicate that, in general, OEF can facilitate the kinetics of the concerned reactions when applied along the suitable direction (parallel or anti-parallel with respect to the reaction axis). The reverse effect happens if the direction of the OEF is flipped. OEF (when applied along the 'right' direction) helps to polarize the transition states in the desired direction, thereby facilitating favorable bonding interactions. Given the growing need for finding appropriate catalysts among the scientific community, OEF can prove to be a vital route for the same.

7.
J Phys Chem A ; 127(21): 4561-4582, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37216335

ABSTRACT

The outstanding capability of Frustrated Lewis Pair (FLP) catalysts to activate small molecules has gained significant attention in recent times. Reactivity of FLP is further extended toward the hydrogenation of various unsaturated species. Over the past decade, this unique catalysis concept has been successfully expanded to heterogeneous catalysis as well. The present review article gives a brief survey on several studies on this field. A thorough discussion on quantum chemical studies concerning the activation of H2 is provided. The role of aromaticity and boron-ligand cooperation on the reactivity of FLP is discussed in the Review. How FLP can activate other small molecules by cooperative action of its Lewis centers is also discussed. Further, the discussion is shifted to the hydrogenation of various unsaturated species and the mechanism regarding this process. It also discusses the latest theoretical advancements in the application of FLP in heterogeneous catalysis across various domains, such as two-dimensional materials, functionalized surfaces, and metal oxides. A deeper understanding of the catalytic process may assist in devising new heterogeneous FLP catalysts through experimental design.

8.
Molecules ; 28(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37050016

ABSTRACT

This article provides a discussion on the nature of bonding between noble gases (Ng) and noble metals (M) from a quantum chemical perspective by investigating compounds such as NgMY (Y=CN, O, NO3, SO4, CO3), [NgM-(bipy)]+, NgMCCH, and MCCNgH complexes, where M=Cu, Ag, Au and Ng=Kr-Rn, with some complexes containing the lighter noble gas atoms as well. Despite having very low chemical reactivity, noble gases have been observed to form weak bonds with noble metals such as copper, gold, and silver. In this study, we explore the factors that contribute to this unusual bonding behavior, including the electronic structure of the atoms involved and the geometric configuration of the concerned fragments. We also investigate the metastable nature of the resulting complexes by studying the energetics of their possible dissociation and internal isomerization channels. The noble gas-binding ability of the bare metal cyanides are higher than most of their bromide counterparts, with CuCN and AgCN showing higher affinity than their chloride analogues as well. In contrast, the oxides seem to have lower binding power than their corresponding halides. In the oxide and the bipyridyl complexes, the Ng-binding ability follows the order Au > Cu > Ag. The dissociation energies calculated, considering the zero-point energy correction for possible dissociation channels, increase as we move down the noble gas group. The bond between the noble gases and the noble metals in the complexes are found to have comparable weightage of orbital and electrostatic interactions, suggestive of a partial covalent nature. The same is validated from the topological analysis of electron density.

9.
J Phys Chem Lett ; 14(14): 3468-3482, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37011157

ABSTRACT

Tackling the problem of global optimization is one of the most important domains that physicists and chemists are working on. The use of soft computing (SC) techniques has made this easier by reducing nonlinearity and instability and making it technologically rich. This Perspective aims at explaining the basic mathematical models of the most efficient and commonly used SC techniques in computational chemistry for finding the global minimum (GM) energy structures of chemical systems. In this Perspective, we discuss the global optimizations of several chemical systems that our group has worked on using CNN, PSO, FA, ABC, BO, and some hybrid techniques, two of which are interfaced to achieve better-quality results.

10.
J Comput Chem ; 44(15): 1446-1453, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-36916825

ABSTRACT

The intrinsic ability of clathrate hydrates to encage gaseous molecules is explored. Encapsulation ability depends on the cavity size and the type of guest gaseous species in addition to the physical parameters, temperature and pressure. Here we have reported the structure, stability and nature of interaction in dissimilar guest occupied sH hydrate cavity. Diatomic gas molecules and small polyatomic hydrocarbons are considered as guests. The irregular icosahedron (512 68 ) cavity of sH hydrate is the host. Different thermodynamic parameters for the guest molecules encapsulation were calculated using three different hybrid DFT functionals, B3LYP, M05-2X, M06, and moreover using dispersion correction (PBE0-D3). With the consideration of large H-bonded systems the 6-31G* and cc-pVTZ basis sets were used for two set of computations. To disclose the nature of interaction between the host-guest systems as well as the interaction between the guest molecules inside the host the non-covalent interaction (NCI) indices and energy decomposition analysis (EDA) were done. Impact of host-guest and guest-guest interactions are discussed.

11.
J Comput Chem ; 44(3): 278-297, 2023 01 30.
Article in English | MEDLINE | ID: mdl-35546516

ABSTRACT

This review aims to be a comprehensive, authoritative, critical, and accessible review of general interest to the chemistry community; because the electrophilicity index is a very useful global reactivity descriptor defined within a conceptual density functional theory framework. Our group has also introduced electrophilicity based new global and local reactivity descriptors and also new associated electronic structure principles, which are important indicators of structure, stability, bonding, reactivity, interactions, and dynamics in a wide variety of physico-chemical systems and processes. This index along with its local counterpart augmented by the associated electronic structure principles could properly explain molecular vibrations, internal rotations and various types of chemical reactions. The concept of the electrophilicity index has been extended to dynamical processes, excited states, confined environment, spin-dependent and temperature-dependent situations, biological activity, site selectivity, aromaticity, charge removal and acceptance, presence of external perturbation through solvents, external electric and magnetic fields, and so forth. Although electrophilicity and its local variant can adequately interpret the behavior of a wide variety of systems and different physico-chemical processes involving them, their predictive potential remains to be explored. An exhaustive review on all these aspects will set the tone of the future research in that direction.


Subject(s)
Electricity , Solvents
12.
Molecules ; 27(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36557816

ABSTRACT

A density functional theory study is performed to determine the stability and bonding in the neon dimer inside the B30N30 fullerene cage, the fluxional B40 cage, and within non-fluxional cages such as B12N12 and C60. The nature of bonding in the Ne2 encapsulated B40 is compared with the that in other cages in an attempt to determine whether any possible alterations are brought about by the dynamical nature of the host cage apart from the associated confinement effects. The bonding analysis includes the natural bond order (NBO), Bader's Atoms-in-Molecules electron density analysis (AIM), and energy decomposition analysis (EDA), revealing the non-covalent nature of the interactions between the Ne atoms and that between the Ne and the cage atoms. The formation of all the Ne2@cage systems is thermochemically unfavourable, the least being that for the B30N30 cage, which can easily be made favourable at lower temperatures. The Ne-Ne distance is lowest in the smallest cage and increases as the cage size increase due to steric relaxation experienced by the dimer. The dynamical picture of the systems is investigated by performing ab initio molecular dynamics simulations using the atom-centred density matrix propagation (ADMP) technique, which shows the nature of the movement of the dimer inside the cages, and by the fact that since it moves as a single entity, a weak bonding force holds them together, apart from their proven kinetic stability.

13.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36355555

ABSTRACT

The preclinical drug discovery stage often requires a large amount of costly and time-consuming experiments using huge sets of chemical compounds. In the last few decades, this process has undergone significant improvements by the introduction of quantitative structure-activity relationship (QSAR) modelling that uses a certain percentage of experimental data to predict the biological activity/property of compounds with similar structural skeleton and/or containing a particular functional group(s). The use of machine learning tools along with it has made life even easier for pharmaceutical researchers. Here, we discuss the toxicity of certain sets of bioactive compounds towards Pimephales promelas and Tetrahymena pyriformis in terms of the global conceptual density functional theory (CDFT)-based descriptor, electrophilicity index (ω). We have compared the results with those obtained by using the commonly used hydrophobicity parameter, logP (where P is the n-octanol/water partition coefficient), considering the greater ease of computing the ω descriptor. The Human African trypanosomiasis (HAT) curing activity of 32 pyridyl benzamide derivatives is also studied against Tryphanosoma brucei. In this review article, we summarize these multiple linear regression (MLR)-based QSAR studies in terms of electrophilicity (ω, ω2) and hydrophobicity (logP, (logP)2) parameters.

14.
Phys Chem Chem Phys ; 24(47): 28700-28781, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36269074

ABSTRACT

In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.


Subject(s)
Materials Science , Humans
15.
Phys Chem Chem Phys ; 24(37): 22634-22644, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36106478

ABSTRACT

Herein, we report for the first time the presence of a planar hexacoordinate boron (phB) atom in the global minimum energy structure of a neutral cluster system. The potential energy surface (PES) has been explored for CB6Al0/+/- systems using density functional theory (DFT). The global minima of CB6Al (1a) and CB6Al+ (1b) contain a phB center. However, the global minimum of CB6Al- (1c) does not have a phB atom. The CCSD(T)/aug-cc-pVTZ level of theory has been applied to compute the relative energies of the low-lying isomers with respect to the 1a and 1b structures of CB6Al and CB6Al+ systems, respectively. The exploration of the PES of CB60/+/- systems indicates that the global minima do not contain a phB atom. However, the incorporation of an aluminium (Al) atom into the CB6 moiety produces structures containing a phB center in the CB6Al0/+ systems. Hence, the Al metal has an important role in attaining a planar geometry having a hexacoordinate boron center. The dynamical stability of CB6Al (1a) and CB6Al+ (1b) was confirmed from the atom-centered density matrix propagation (ADMP) simulation over 20 ps of time at temperatures of 300 K and 400 K. The natural charge computations showed that the charges on the phB are almost zero in both systems. The 1a structure has σ/π-dual aromaticity as predicted from the nucleus independent chemical shift (NICS) values and the gauge-including magnetically induced ring current (GIMIC).

16.
J Phys Chem A ; 126(39): 6801-6813, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36154006

ABSTRACT

The periodic trends in conceptual density functional and information theory-based reactivity descriptors are reported for the atoms H to Ba (Z = 1 to 56). Ionization potential, electron affinity, electronegativity, and hardness show periodic behavior following the Aufbau principle and popular electronic structure principles. They are in agreement with those reported in standard chemistry textbooks. The trend in the electrophilicity index, however, shows an interesting behavior, where it contradicts earlier reports. Our calculation reveals that the noble gas elements correspond to minimum ω values in each period which obey the minimum electrophilicity principle as well as reflect their low reactivity. Periodic trends in electroaccepting and electrodonating powers, along with that of net electrophilicity, are as expected. The behavior of information theory-based Shannon and GBP entropies, along with the Shannon entropy of shape function are also explored across the periodic table.

17.
Chemphyschem ; 23(23): e202200329, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-35894262

ABSTRACT

Electrides are defined as the ionic compounds where the electron(s) serves as an anion. These electron(s) is (are) not bound to any atoms, bonds, or molecules but are rather localized into the space, crystal voids, or interlayer between two molecular slabs. There are three major categories of electrides, known as organic electrides, inorganic electrides, and molecular electrides. The computational techniques have proven as a great tool to provide emphasis on the electride materials. In this review, we have focused on the computational methodologies and criteria that help to characterize molecular electrides. A detailed account of the computational methods and basis sets applicable for molecular electrides have been discussed along with their limitations in this field. The main criterion for the identification of the electrides has also been discussed thoroughly with proper examples. The molecular electrides presented here have been justified with all the required criteria that support and proved their electride characteristics. We have also presented few systems which have similar properties but are not considered as molecular electrides. Moreover, the applicability of the electrides in catalytic processes have also been presented.

18.
J Phys Chem A ; 126(29): 4834-4847, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35834735

ABSTRACT

The roles of spatial symmetry and strength of external time-dependent perturbation on the dynamics of a quantum particle, initially localized in one of the wells of an asymmetric double-well potential are studied using the recently developed techniques incorporating quantum theory of motion and time-dependent Fourier grid Hamiltonian methods. The model used here includes a mimic of the related experimental situations which is considered as a perturbation to the static double-well potential. Analysis of localized and delocalized phase space structures and corresponding time-profile of tunneling probability reveal the recipe toward controlling the tunneling oscillations by modulating the parameters of applied perturbation. A study on a stochastic pulsating potential also reveals the root to the quantum localization, even in moderate field strength.

19.
Phys Chem Chem Phys ; 24(27): 16701-16711, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35770562

ABSTRACT

Density functional theory (DFT) based calculations have been carried out to explore the potential energy surface (PES) of CSinGe4-n2+/+/0 (n = 1-3) systems. The global minimum structures in the di-cationic states (1a, 1b, and 1c) contain a planar tetracoordinate carbon (ptC). For the CSi2Ge22+ system, the second stable isomer (2b) also contains a ptC with 0.67 kcal mol-1 higher energy than that of the 1b ptC isomer. The global minima of the neutral and mono-cationic states of the designed systems are not planar. The 1a, 1b, and 1c structures follow the 18 valence electron rule. The relative energies of the low-lying isomers of CSiGe32+, CSi2Ge22+, and CSi3Ge2+ systems with respect to the global minima were calculated using the CCSD(T)/aug-cc-pVTZ method. Ab initio molecular dynamics simulations for 50 ps time indicate that all the global minimum structures (1a, 1b, and 1c) are kinetically stable at 300 K and 500 K temperatures. The natural bond orbital (NBO) analysis suggests strong σ-acceptance of the ptC from the four surrounding atoms and simultaneously π-donation occurs from the ptC center. The nucleus independent chemical shift (NICS) showed σ/π-dual aromaticity. We hope that the designed di-cationic systems may be viable in the gas phase.

20.
J Comput Chem ; 43(13): 894-905, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35322887

ABSTRACT

Density functional theory (DFT) is used to explore the structure, stability, and bonding in CSiGaAl2 -/0 and CGeGaAl2 -/0 systems having planar tetracoordinate carbon (ptC). The neutral systems have 17 valence electrons and the mono-anionic systems have 18 valence electrons. The ab initio molecular dynamics simulations for 2000 fs time at two different temperatures (300 and 500 K) supported the kinetic stability of the systems. From the natural bond orbital (NBO) analysis it is shown that there is a strong electron donation from the ligand atoms to the ptC atom. We have used Li+ ion for the neutralization of the mono-anionic systems and more interestingly it does not disrupt the planar structure. The most preferable site for binding of Li+ ion is along the AlAl bond in both of the mono-anionic systems. All the systems in this work have both σ and π aromaticity which is predicted from the computations of nucleus independent chemical shift (NICS). Although the anionic species obey the 18 valence electronic rule, the neutral systems break the rule with 17 valence electrons. However, both sets of systems are stable in the planar form. The bonding analysis of the systems includes molecular orbital, adaptive natural density partitioning (AdNDP), quantum theory of atoms in molecules (QTAIM), electron localization function (ELF) basin, and aromaticity analyses. The energy decomposition analysis (EDA) determines the interaction of Li+ ion with CSiGaAl2 - and CGeGaAl2 - in Li@SiGaAl2 and Li@GeGaAl2 , respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...