Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(17): 8961-8970, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38619566

ABSTRACT

"Aggregation-caused quenching" is a deep-seated mechanism and has been widely used by the researchers as the possible basis for new sensor development. Contrast to aggregation, its turn around process, disaggregation, has gained much less consideration so far. Unfortunately, study of the further scope for reaggregation of the disaggregated probe assembly in the same solution, as and when required, is still under the rare category. The central theme of the current study is focused on this aspect. For this purpose, the effects of headgroup charge (cationic, anionic, and nonionic) and polarity of the micelles on the degree of disaggregation and subsequent emission amelioration of a synthesized bis-indole derivative, 3,3'-bisindolyl(phenyl)methane (BIPM), are studied using steady-state and time-resolved spectroscopic techniques. The relative emission yield of BIPM (φf = 0.01) is significantly enhanced in the presence of cetyltrimethylammonium bromide (φf = 0.21) and polyoxyethylene (20) sorbitan monolaurate (φf = 0.24), whereas comparatively less emission enhancement is recorded within the sodium dodecyl sulfate system (φf = 0.07). In contrast, addition of an external biophilic agent, uric acid, causes requenching of the enhanced emission because of the reaggregation of the disaggregated probes. Detailed microscopic and calorimetric studies are also adopted to investigate the disaggregation-reaggregation mechanism of BIPM associations. The study will provide prior insights about the use of suitable micellar systems for the required degree of disaggregation as well as for the modulation of emission efficiency by controlled tuning of the disaggregation-reaggregation equilibrium for similar probe associations in pure aqueous medium avoiding any chemical transformation.

2.
Langmuir ; 40(8): 4321-4332, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38364370

ABSTRACT

Different phases of lyotropic liquid crystals (LLCs), made up of mesogen-like sodium dodecyl sulfate (SDS), mainly bestow different bulk viscosities. Along with this, the role of microviscosities of the individual LLC phases is of immense interest because a minute change in it due to guest incorporation can cause significant alteration in their property as a potential energy transfer scaffold. Recently, LLCs have been identified as plausible drug delivery agents for ocular treatments. In this direction, the present work illustrates photophysical modulations of an important laser dye as well as an ophthalmic medicine, coumarin 6 (C6), inside different LLC phases in an aqueous medium. C6 molecules spontaneously accumulate in water, leading to aggregation-caused quenching (ACQ) of fluorescence. However, the different phases of the LLCs prepared from SDS and water helped in disintegrating the C6 colonies to various extents depending upon the microviscosity. The heterogeneity in the LLC phases, in turn, could modulate the Förster resonance energy transfer (FRET) between C6 and the LLC incorporated with N-doped carbon nanoparticles (N-CNPs). The N-CNPs act as potential photosensitizers and generate singlet oxygen (1O2), a reactive oxygen species (ROS), to different extents. Microviscosities of the prepared LLCs were calculated by using fluorescence correlation spectroscopy (FCS). The different phases of the LLCs, viz., lamellar and hexagonal, with different microviscosities controlled the extent of C6 disaggregation and hence the FRET and the ROS generation. The results are encouraging since ROS generation has a significant role in the vision mechanism and PDT-based applications. LLC-based drug administration with potential FRET to control ROS generation may become handy in ophthalmology. The LLC phases used in this experiment not only served the purpose of drug delivery but also the photophysical events therein are compatible with the ocular environment.


Subject(s)
Liquid Crystals , Singlet Oxygen , Reactive Oxygen Species , Fluorescence Resonance Energy Transfer , Liquid Crystals/chemistry , Viscosity , Water/chemistry
3.
J Phys Chem Lett ; 14(36): 8251-8260, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37676104

ABSTRACT

Considering the augmentation of new generation energy harvesting devices and applications of electron-hole separation therein, conversion of 3D cubic CsPbBr3 perovskite nanocrystals into 2D-platelets through ligand-ligand hydrophobic interactions has been conceived here. Cationic surfactants with various chain length coated the gold nanoclusters (AuNCs) that interact with oleic acid (OA) and oleylamine (OAm) coated 3D CsPbBr3 nanocrystals to disintegrate the crystallinity of the perovskites and reformation of AuNC-grafted 2D-platelets of unusually large size. The planar perovskite-derivatives act as an exciton donor to the embedded AuNCs through photoinduced electron transfer (PET). This process is controlled by the optimum surfactant chain length. Transient absorption spectroscopy shows that the fastest radical growth time (4 ps) was with the 14-carbon containing tail of the surfactant, followed by the 16-carbon (45 ps) and the 12-carbon (290 ps) ones. PET is administered by the energy gaps of the participating candidates that control the transition dynamics. Our findings can be a potential tool to develop metal nanocluster-based hybrid 2D perovskite-derived platelets for optoelectronic applications.

4.
Phys Chem Chem Phys ; 25(14): 10166-10174, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36976259

ABSTRACT

Disaggregation-induced emission enhancement was studied using a self-aggregated bis-indole derivative, 3,3'-bisindolyl(phenyl)methane (BIPM), and ß-CD molecules were employed for the emission recovery. In our recent study, BIPM molecules were found to exhibit weak emission efficiency in pure water due to aggregation-caused quenching (ACQ) effects. In the present study, we employed a simple, effective, biologically benign, and sustainable strategy in an attempt to disaggregate the BIPM self-aggregates into monomers to restore their emission efficiency. The ß-CD molecules were found to be effective in disaggregating the BIPM associations through tugging the monomers from their self-associations and encapsulating them into supramolecular nanocavities. The changes in the photophysical, dynamical, and thermodynamic properties associated with the disaggregation of the probe assemblies were studied by employing steady-state and time-resolved spectroscopy, isothermal titration calorimetry, and transmission electron microscopy with support from computational studies. The detailed photophysical and thermodynamic investigations on the disaggregation of the BIPM self-associations might provide significant insights towards its suitability for diverse biological and pharmaceutical applications.

5.
Langmuir ; 38(41): 12415-12420, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36196476

ABSTRACT

Chemical and biological interfaces are of various types, which could be between two materials of the same and/or different states, two phases of the same material, biological substrates and the outer environment, surfactant or polymeric membranes and the bulk, and so forth. Small-molecule guests frequently interact with such interfaces that decide their functionalities. The structural and behavioral properties undergo considerable characteristic changes, which control their final course of action in the targeted application. This Perspective will discuss mainly the chemical interfaces constituted by the surfactants, polymers, lipids, and nucleic acids and their impacts on the dynamics of small-molecule guests. Some specific and interesting phenomena and future prospects will be elucidated in this Perspective.


Subject(s)
Nucleic Acids , Surface-Active Agents , Lipids , Polymers/chemistry , Surface Properties , Surface-Active Agents/chemistry
6.
Anal Bioanal Chem ; 414(20): 6055-6067, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35697813

ABSTRACT

Lateral heterogeneity in cell membranes features a variety of compositions that influence their inherent properties. One such biophysical variation is the formation of a membrane or lipid raft, which plays important roles in many cellular processes. The lipid rafts on the cell membrane are mostly identified by specific dyes and heavy metal quantum dots, which have their own drawbacks, such as cytotoxicity, photostability, and incompatibility. To this end, we synthesized special, hydrophobic, fluorescent, photostable, and non-cytotoxic carbon dots (CDs) by solvent-free thermal treatment using non-cytotoxic materials and incorporated into the lipid bilayers of giant unilamellar vesicles (GUVs) made from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) lipids. A 2:2:1 mixture of DOPC, DPPC, and cholesterol (Chol) develops lipid rafts on the membrane by phase separation. The photophysical properties of the CDs get modulated on incorporation into the lipid rafts that identifies the membrane heterogeneity. The main attempt in this work is to develop a new, simple, cost-effective, and bio-friendly lipid raft marker, which can be used in biological applications, alongside other conventional raft markers, with more advantages.


Subject(s)
Carbon , Phosphatidylcholines , 1,2-Dipalmitoylphosphatidylcholine/analysis , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Carbon/analysis , Coloring Agents , Lipid Bilayers/chemistry , Membrane Microdomains/chemistry , Phosphatidylcholines/chemistry
7.
Nanoscale ; 14(17): 6570-6584, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35420619

ABSTRACT

Non-ionic surfactant vesicular systems (niosomes) are structurally similar to lipid vesicles, differing only in the bilayer composition. Herein we report a unique method to generate reactive oxygen species (ROS) utilizing a FLIM-FRET technique involving niosome-trapped yellow emissive carbon dots (YCDs) and methylene blue (MB) in aqueous medium under neutral conditions. Niosomes are biologically important because of their good stability and extremely low toxicity. Fluorescent CDs, emitting in the higher wavelengths on visible light excitation, are of incredible importance in bio-imaging and optoelectronics. Hence, we prepared nitrogen-containing YCDs from a single precursor, o-phenylenediamine, and explained their detailed photophysics upon incorporation into the niosomal bilayer. The YCDs are polarity sensitive, and are rotationally restricted in niosomes, which increases their fluorescence quantum yield from 29% (in water) to 91%. These YCDs are tactically employed to develop a near infrared (NIR) FRET pair with methylene blue (MB), which is a very well-known type-I and type-II photosensitizer. This FRET pair, which emits in the NIR region, is found to be an ideal system to generate ROS by excitation in the lower visible wavelengths. Interestingly, the ROS production by MB from the dissolved oxygen is enhanced inside the niosomes. The donor and the acceptor moieties in this unique NIR-emitting FRET pair display an unprecedented 300 nm Stokes shift. The findings could be influential in bio-imaging in the NIR region evading cellular autofluorescence and the controllably generated ROS can be further applied as a potential photodynamic therapeutic agent.


Subject(s)
Carbon , Liposomes , Fluorescence Resonance Energy Transfer/methods , Methylene Blue , Reactive Oxygen Species
8.
J Phys Chem B ; 126(6): 1232-1241, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35129981

ABSTRACT

Daunomycin (DN) is a well-known chemotherapy drug frequently used in treating acute myeloid and lymphoblastic leukemia. It needs to be delivered to the therapeutic target by a delivering agent that beats the blood-brain barrier. DN is known to be specifically located at the membrane surface and scantly to the bilayer. Penetration of DN into the membrane bilayer depends on the molecular packing of the lipid. It does not travel promptly to the interior of the cells and needs a carrier to serve the purpose. Here, we have demonstrated, by fluorescence lifetime imaging spectroscopy (FLIM) and resonance energy transfer (RET) phenomenon, that ultrasmall graphene quantum dots (GQDs) can be internalized into the aqueous pool of giant unilamellar vesicles (GUVs) made from dipalmitoylphosphatidylcholine (DPPC) lipids, which, in turn, help in fast translocation of DN through the membrane without any delivery vehicle.


Subject(s)
Graphite , Quantum Dots , Daunorubicin , Energy Transfer , Graphite/chemistry , Lipids/chemistry , Microscopy, Fluorescence , Quantum Dots/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...