Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Neurosci ; 15: 1028963, 2022.
Article in English | MEDLINE | ID: mdl-36504683

ABSTRACT

Inhibition of Glycogen synthase kinase 3 (GSK3) is a popular explanation for the effects of lithium ions on mood regulation in bipolar disorder and other mental illnesses, including major depression, cyclothymia, and schizophrenia. Contribution of GSK3 is supported by evidence obtained from animal and patient derived model systems. However, the two GSK3 enzymes, GSK3α and GSK3ß, have more than 100 validated substrates. They are thus central hubs for major biological functions, such as dopamine-glutamate neurotransmission, synaptic plasticity (Hebbian and homeostatic), inflammation, circadian regulation, protein synthesis, metabolism, inflammation, and mitochondrial functions. The intricate contributions of GSK3 to several biological processes make it difficult to identify specific mechanisms of mood stabilization for therapeutic development. Identification of GSK3 substrates involved in lithium therapeutic action is thus critical. We provide an overview of GSK3 biological functions and substrates for which there is evidence for a contribution to lithium effects. A particular focus is given to four of these: the transcription factor cAMP response element-binding protein (CREB), the RNA-binding protein FXR1, kinesin subunits, and the cytoskeletal regulator CRMP2. An overview of how co-regulation of these substrates may result in shared outcomes is also presented. Better understanding of how inhibition of GSK3 contributes to the therapeutic effects of lithium should allow for identification of more specific targets for future drug development. It may also provide a framework for the understanding of how lithium effects overlap with those of other drugs such as ketamine and antipsychotics, which also inhibit brain GSK3.

2.
Int J Neuropsychopharmacol ; 24(10): 842-853, 2021 10 23.
Article in English | MEDLINE | ID: mdl-34346493

ABSTRACT

BACKGROUND: Neuromorphological changes are consistently reported in the prefrontal cortex of patients with stress-related disorders and in rodent stress models, but the effects of stress on astrocyte morphology and the potential link to behavioral deficits are relatively unknown. METHODS: To answer these questions, transgenic mice expressing green fluorescent protein (GFP) under the glial fibrillary acid protein (GFAP) promotor were subjected to 7, 21, or 35 days of chronic restraint stress (CRS). CRS-induced behavioral effects on anhedonia- and anxiety-like behaviors were measured using the sucrose intake and the PhenoTyper tests, respectively. Prefrontal cortex GFP+ or GFAP+ cell morphology was assessed using Sholl analysis, and associations with behavior were determined using correlation analysis. RESULTS: CRS-exposed male and female mice displayed anxiety-like behavior at 7, 21, and 35 days and anhedonia-like behavior at 35 days. Analysis of GFAP+ cell morphology revealed significant atrophy of distal processes following 21 and 35 days of CRS. CRS induced similar decreases in intersections at distal radii for GFP+ cells accompanied by increased proximal processes. In males, the number of intersections at the most distal radius step significantly correlated with anhedonia-like behavior (r = 0.622, P < .05) for GFP+ cells and with behavioral emotionality calculated by z-scoring all behavioral measured deficits (r = -0.667, P < .05). Similar but not significant correlations were observed in females. No correlation between GFP+ cell atrophy with anxiety-like behavior was found. CONCLUSION: Chronic stress exposure induces a progressive atrophy of cortical astroglial cells, potentially contributing to maladaptive neuroplastic and behavioral changes associated with stress-related disorders.


Subject(s)
Astrocytes/metabolism , Prefrontal Cortex/metabolism , Stress, Psychological/metabolism , Animals , Anxiety/metabolism , Depression/metabolism , Female , Glial Fibrillary Acidic Protein/metabolism , Male , Mice , Mice, Transgenic , Neuronal Plasticity , Restraint, Physical
3.
Article in English | MEDLINE | ID: mdl-33864849

ABSTRACT

The zebrafish is increasingly well utilized in alcohol research, particularly in modeling human fetal alcohol spectrum disorders (FASD). FASD results from alcohol reaching the developing fetus intra utero, a completely preventable yet prevalent and devastating life-long disorder. The hope with animal models, including the zebrafish, is to discover the mechanisms underlying this disease, which may aid treatment and diagnosis. In the past, we developed an embryonic alcohol exposure regimen that is aimed at mimicking the milder, and most prevalent, forms of FASD in zebrafish. We have found numerous lasting alterations in behavior, neurochemistry, neuronal markers and glial cell phenotypes in this zebrafish FASD model. Using the same model (2 h long bath immersion of 24 h post-fertilization old zebrafish eggs into 1% vol/vol ethanol), here we conduct a proof of concept analysis of voltage-gated cation channels, investigating potential embryonic alcohol induced changes in L-, T- and N- type Ca++ and the SCN1A Na+ channels using Western blot followed by immunohistochemical analysis of the same channels in the pallium and cerebellum of the zebrafish brain. We report significant reduction of expression in all four channel proteins using both methods. We conclude that reduced voltage-gated cation channel expression induced by short and low dose exposure to alcohol during embryonic development of zebrafish may contribute to the previously demonstrated lasting behavioral and neurobiological changes.


Subject(s)
Brain/drug effects , Brain/metabolism , Calcium Channels/metabolism , Embryonic Development/drug effects , Ethanol/administration & dosage , NAV1.1 Voltage-Gated Sodium Channel/metabolism , Zebrafish Proteins/metabolism , Age Factors , Animals , Embryonic Development/physiology , Female , Pregnancy , Zebrafish
4.
Addict Biol ; 26(1): e12867, 2021 01.
Article in English | MEDLINE | ID: mdl-31919968

ABSTRACT

Despite the known teratogenic effects of alcohol (ethanol) on the developing human fetus, the prevalence of fetal alcohol spectrum disorder (FASD) is not decreasing. Appropriate treatment for this life-long disease has not been developed, and even diagnostic biomarkers are unavailable. FASD remains a large unmet medical need. Numerous animal models have been developed to mimic FASD and study potential underlying biological mechanisms. However, most of these models focused on neuronal phenotypes. Given that glial cells represent the majority of cells in the vertebrate brain, and given the increasingly appreciated roles they play in a myriad of neuronal functions as well as CNS disorders, we decided to investigate potential embryonic alcohol exposure induced changes in them. Building upon a previously introduced zebrafish model of milder and most prevalent forms of FASD, we investigated the effect of a 2-hour-long exposure to alcohol (1% vol/vol bath concentration) employed at the 24th hour postfertilization stage of development of zebrafish on a number of glial cell-related phenotypes. We studied oligodendrocyte, astrocyte as well as microglia-related phenotypes using immunohistochemistry, lipid, and enzyme activity analyses. We report significant changes in wide-spread glial cell phenotypes induced by embryonic alcohol exposure in the zebrafish brain and conclude that the zebrafish will advance our understanding of the mechanisms of this devastating disorder.


Subject(s)
Ethanol/pharmacokinetics , Neuroglia/drug effects , Zebrafish/embryology , Animals , Brain/drug effects , Disease Models, Animal , Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Fetal Alcohol Spectrum Disorders/metabolism , Neurons/drug effects , Phenotype
5.
EMBO J ; 39(21): e103864, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32893934

ABSTRACT

The fragile X autosomal homolog 1 (Fxr1) is regulated by lithium and has been GWAS-associated with schizophrenia and insomnia. Homeostatic regulation of synaptic strength is essential for the maintenance of brain functions and involves both cell-autonomous and system-level processes such as sleep. We examined the contribution of Fxr1 to cell-autonomous homeostatic synaptic scaling and neuronal responses to sleep loss, using a combination of gene overexpression and Crispr/Cas9-mediated somatic knockouts to modulate gene expression. Our findings indicate that Fxr1 is downregulated during both scaling and sleep deprivation via a glycogen synthase kinase 3 beta (GSK3ß)-dependent mechanism. In both conditions, downregulation of Fxr1 is essential for the homeostatic modulation of surface AMPA receptors and synaptic strength. Preventing the downregulation of Fxr1 during sleep deprivation results in altered EEG signatures. Furthermore, sequencing of neuronal translatomes revealed the contribution of Fxr1 to changes induced by sleep deprivation. These findings uncover a role of Fxr1 as a shared signaling hub between cell-autonomous homeostatic plasticity and system-level responses to sleep loss, with potential implications for neuropsychiatric illnesses and treatments.


Subject(s)
Homeostasis/physiology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Sleep/genetics , Sleep/physiology , Animals , Brain/physiology , Disease Models, Animal , Down-Regulation , Gene Expression Regulation , Gene Knockout Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity , Neurons/metabolism , Receptors, AMPA/metabolism , Transcriptome
6.
Eur Heart J ; 41(30): 2878-2890, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32533187

ABSTRACT

AIMS: Brugada syndrome (BrS) is characterized by a unique electrocardiogram (ECG) pattern and life-threatening arrhythmias. However, the Type 1 Brugada ECG pattern is often transient, and a genetic cause is only identified in <25% of patients. We sought to identify an additional biomarker for this rare condition. As myocardial inflammation may be present in BrS, we evaluated whether myocardial autoantibodies can be detected in these patients. METHODS AND RESULTS: For antibody (Ab) discovery, normal human ventricular myocardial proteins were solubilized and separated by isoelectric focusing (IEF) and molecular weight on two-dimensional (2D) gels and used to discover Abs by plating with sera from patients with BrS and control subjects. Target proteins were identified by mass spectrometry (MS). Brugada syndrome subjects were defined based on a consensus clinical scoring system. We assessed discovery and validation cohorts by 2D gels, western blots, and ELISA. We performed immunohistochemistry on myocardium from BrS subjects (vs. control). All (3/3) 2D gels exposed to sera from BrS patients demonstrated specific Abs to four proteins, confirmed by MS to be α-cardiac actin, α-skeletal actin, keratin, and connexin-43, vs. 0/8 control subjects. All (18/18) BrS subjects from our validation cohorts demonstrated the same Abs, confirmed by western blots, vs. 0/24 additional controls. ELISA optical densities for all Abs were elevated in all BrS subjects compared to controls. In myocardium obtained from BrS subjects, each protein, as well as SCN5A, demonstrated abnormal protein expression in aggregates. CONCLUSION: A biomarker profile of autoantibodies against four cardiac proteins, namely α-cardiac actin, α-skeletal actin, keratin, and connexin-43, can be identified from sera of BrS patients and is highly sensitive and specific, irrespective of genetic cause for BrS. The four involved proteins, along with the SCN5A-encoded Nav1.5 alpha subunit are expressed abnormally in the myocardium of patients with BrS.


Subject(s)
Brugada Syndrome , Arrhythmias, Cardiac , Autoantibodies , Brugada Syndrome/diagnosis , Electrocardiography , Heart Ventricles , Humans
7.
Psychopharmacology (Berl) ; 236(12): 3541-3556, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31302721

ABSTRACT

RATIONALE: Ethanol-induced behavioural sensitization (EBS) does not occur uniformly in mice exposed to the sensitization paradigm. This suggests innate differential responses to ethanol (EtOH) in the reward circuitry of individual animals. OBJECTIVES: To better characterize the adaptive differences between low-sensitized (LS) and high-sensitized (HS) mice, we examined excitatory amino acid (EAA) and inhibitory amino acid (IAA) neurotransmitter levels in the nucleus accumbens (NAc) during EBS expression. METHODS: Male DBA/2J mice received five ethanol (EtOH) (2.2 g/kg) or saline injections, and locomotor activity (LMA) was assessed during EBS induction. EtOH mice were classified as LS or HS on the basis of final LMA scores. Following an EtOH challenge (1.8 g/kg) 2 weeks later, LMA was re-evaluated and in vivo microdialysis samples were collected from the NAc. RESULTS: Most differences in amino acid levels were observed within the first 20 min after EtOH challenge. LS mice exhibited similar glutamate levels compared with acutely treated (previously EtOH naïve) mice, and generally increased levels of the IAAs GABA, glycine, and taurine. By contrast, HS mice exhibited increased glutamate and attenuated levels of GABA, glycine, and taurine. CONCLUSION: These data suggest that the profile of amino acid neurotransmitters in the NAc of LS and HS mice significantly differs. Elucidating these adaptive differences contributes to our understanding of factors that confer susceptibility/resilience to alcohol use disorder.


Subject(s)
Ethanol/administration & dosage , Nerve Net/metabolism , Neurotransmitter Agents/metabolism , Nucleus Accumbens/metabolism , Synapses/metabolism , Amino Acids/metabolism , Animals , Excitatory Amino Acids/metabolism , Learning/drug effects , Learning/physiology , Male , Mice , Mice, Inbred DBA , Microdialysis/methods , Motor Activity/drug effects , Motor Activity/physiology , Nerve Net/drug effects , Nucleus Accumbens/drug effects , Synapses/drug effects
8.
Neuropharmacology ; 153: 98-110, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31075295

ABSTRACT

Stress-related illnesses such as major depressive and anxiety disorders are characterized by maladaptive responses to stressful life events. Chronic stress-based animal models have provided critical insight into the understanding of these responses. Currently available assays measuring chronic stress-induced behavioral states in mice are limited in their design (short, not repeatable, sensitive to experimenter-bias) and often inconsistent. Using the Noldus PhenoTyper apparatus, we identified a new readout that repeatedly assesses behavioral changes induced by chronic stress in two mouse models i.e. chronic restraint stress (CRS) and chronic unpredictable mild stress (UCMS). The PhenoTyper test consists of overnight monitoring of animals' behavior in home-cage setting before, during and after a 1hr light challenge applied over a designated food zone. We tested the reproducibility and reliability of the PhenoTyper test in assessing the effects of chronic stress exposure, and compared outcomes with commonly-used tests. While chronic stress induced heterogeneous profiles in classical tests, CRS- and UCMS-exposed mice showed a very consistent response in the PhenoTyper test. Indeed, CRS and UCMS mice continue avoiding the lit zone in favor of the shelter zone. This "residual avoidance" after the light challenge, lasted for hours beyond termination of the challenge, was not observed after acute stress and was consistently found throughout stress exposure in both models. Chronic stress-induced residual avoidance was alleviated by chronic imipramine treatment but not acute diazepam administration. This behavioral index should be instrumental for studies aiming to better understand the trajectory of chronic stress-induced deficits and potentially screen novel anxiolytics and antidepressants.


Subject(s)
Antidepressive Agents/therapeutic use , Anxiety/drug therapy , Avoidance Learning/drug effects , Depression/drug therapy , Stress, Psychological/drug therapy , Animals , Antidepressive Agents/pharmacology , Anxiety/psychology , Avoidance Learning/physiology , Chronic Disease , Depression/psychology , Diazepam/pharmacology , Diazepam/therapeutic use , Female , Male , Mice , Mice, Inbred C57BL , Stress, Psychological/psychology , Treatment Outcome
9.
Eur J Neurosci ; 47(12): 1457-1473, 2018 06.
Article in English | MEDLINE | ID: mdl-29846983

ABSTRACT

Fetal alcohol spectrum disorder is one of the leading causes of mental health issues worldwide. Analysis of zebrafish exposed to alcohol during embryonic development confirmed that even low concentrations of alcohol for a short period of time may have lasting behavioral consequences at the adult or old age. The mechanism of this alteration has not been studied. Here, we immersed zebrafish embryos into 1% alcohol solution (vol/vol%) at 24 hr post-fertilization (hpf) for 2 hr and analyzed potential changes using immunohistochemistry. We measured the number of BDNF (brain-derived neurotrophic factor) and NCAM (neuronal cell adhesion molecule)-positive neurons and the intensity of synaptophysin staining in eight brain regions: lateral zone of the dorsal telencephalic area, medial zone of the dorsal telencephalic area, dorsal nucleus of the ventral telencephalic area, ventral nucleus of the ventral telencephalic area, parvocellular preoptic nucleus, ventral habenular nucleus, corpus cerebella and inferior reticular formation. We found embryonic alcohol exposure to significantly reduce the number of BDNF- and NCAM-positive cells in all brain areas studied as compared to control. We also found alcohol to significantly reduce the intensity of synaptophysin staining in all brain areas except the cerebellum and preoptic area. These neuroanatomical changes correlated with previously demonstrated reduction of social behavior in embryonic alcohol-exposed zebrafish, raising the possibility of a causal link. Given the evolutionary conservation across fish and mammals, we emphasize the implication of our current study for human health: even small amount of alcohol consumption may be unsafe during pregnancy.


Subject(s)
Brain-Derived Neurotrophic Factor , Brain/drug effects , Central Nervous System Depressants/adverse effects , Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Ethanol/adverse effects , Fetal Alcohol Spectrum Disorders , Neural Cell Adhesion Molecules , Neuronal Plasticity/drug effects , Neurons/drug effects , Synaptophysin , Teratogens/pharmacology , Zebrafish Proteins , Animals , Brain/cytology , Disease Models, Animal , Embryo, Nonmammalian/cytology , Neurons/cytology , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...