Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38562769

ABSTRACT

Racial disparities in triple-negative breast cancer (TNBC) outcomes have been reported. However, the biological mechanisms underlying these disparities remain unclear. We integrated imaging mass cytometry and spatial transcriptomics, to characterize the tumor microenvironment (TME) of African American (AA) and European American (EA) patients with TNBC. The TME in AA patients was characterized by interactions between endothelial cells, macrophages, and mesenchymal-like cells, which were associated with poor patient survival. In contrast, the EA TNBC-associated niche is enriched in T-cells and neutrophils suggestive of an exhaustion and suppression of otherwise active T cell responses. Ligand-receptor and pathway analyses of race-associated niches found AA TNBC to be immune cold and hence immunotherapy resistant tumors, and EA TNBC as inflamed tumors that evolved a distinctive immunosuppressive mechanism. Our study revealed the presence of racially distinct tumor-promoting and immunosuppressive microenvironments in AA and EA patients with TNBC, which may explain the poor clinical outcomes.

2.
Sci Rep ; 11(1): 12292, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112860

ABSTRACT

Peptidyl-prolyl cis-trans isomerases (PPIases) are the only class of enzymes capable of cis-trans isomerization of the prolyl peptide bond. The PPIases, comprising of different families viz., cyclophilins, FK506-binding proteins (FKBPs), parvulins and protein phosphatase 2A phosphatase activators (PTPAs), play essential roles in different cellular processes. Though PPIase gene families have been characterized in different organisms, information regarding these proteins is lacking in Penicillium species, which are commercially an important fungi group. In this study, we carried out genome-wide analysis of PPIases in different Penicillium spp. and investigated their regulation by salt stress in a halotolerant strain of Penicillium oxalicum. These analyses revealed that the number of genes encoding cyclophilins, FKBPs, parvulins and PTPAs in Penicillium spp. varies between 7-11, 2-5, 1-2, and 1-2, respectively. The halotolerant P. oxalicum depicted significant enhancement in the mycelial PPIase activity in the presence of 15% NaCl, thus, highlighting the role of these enzymes in salt stress adaptation. The stress-induced increase in PPIase activity at 4 and 10 DAI in P. oxalicum was associated with higher expression of PoxCYP18. Characterization of PPIases in Penicillium spp. will provide an important database for understanding their cellular functions and might facilitate their applications in industrial processes through biotechnological interventions.


Subject(s)
Genome, Fungal/genetics , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Penicillium/genetics , Peptidylprolyl Isomerase/genetics , Amino Acid Sequence/genetics , Catalysis , Cyclophilins/genetics , Gene Expression Regulation, Fungal/genetics , Peptidylprolyl Isomerase/classification , Phosphoprotein Phosphatases , Protein Folding , Tacrolimus Binding Proteins/genetics
3.
Exp Neurol ; 338: 113463, 2021 04.
Article in English | MEDLINE | ID: mdl-32941796

ABSTRACT

Poly-glutamine expansion near the N-terminus of the huntingtin protein (HTT) is the prime determinant of Huntington's disease (HD) pathology; however, post-translational modifications and protein context are also reported to influence poly-glutamine induced HD toxicity. The impact of phosphorylating serine 13/16 of mutant HTT (mHTT) on HD has been documented in cell culture and murine models. However, endogenous processing of the human protein in mammalian systems complicates the interpretations. Therefore, to study the impact of S13/16 phosphorylation on the subcellular behavior of HTT under a controlled genetic background with minimal proteolytic processing of the human protein, we employed Drosophila as the model system. We ectopically expressed full-length (FL) and exon1 fragment of human HTT with phosphomimetic and resistant mutations at serines 13 and 16 in different neuronal populations. Phosphomimetic mHTT aggravates and the phosphoresistant mutation ameliorates mHTT-induced toxicity in the context of both FL- and exon1- mHTT in Drosophila although in all cases FL appears less toxic than exon1. Our observations strongly indicate that the phosphorylation status of S13/16 can affect HD pathology in Drosophila and these residues can be potential targets for affecting HD pathogenesis.


Subject(s)
Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Serine/genetics , Serine/metabolism , Animals , Animals, Genetically Modified , Drosophila , Humans , Mutation , Neurons/pathology , Phosphorylation , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...