Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 109(2-1): 024603, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491596

ABSTRACT

We study the effects of inertia in dense suspensions of polar swimmers. The hydrodynamic velocity field and the polar order parameter field describe the dynamics of the suspension. We show that a dimensionless parameter R (ratio of the swimmer self-advection speed to the active stress invasion speed [Phys. Rev. X 11, 031063 (2021)2160-330810.1103/PhysRevX.11.031063]) controls the stability of an ordered swimmer suspension. For R smaller than a threshold R_{1}, perturbations grow at a rate proportional to their wave number q. Beyond R_{1} we show that the growth rate is O(q^{2}) until a second threshold R=R_{2} is reached. The suspension is stable for R>R_{2}. We perform direct numerical simulations to characterize the steady-state properties and observe defect turbulence for R

2.
Soft Matter ; 17(30): 7177-7187, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34268552

ABSTRACT

Interpenetrating and random copolymer networks are vital in a number of industrial applications, including the fabrication of automotive parts, damping materials, and tissue engineering scaffolds. We develop a theoretical model for a process that enables the controlled growth of interpenetrating network (IPNs), or a random copolymer network (RCN) of specified size and mechanical properties. In this process, a primary gel "seed" is immersed into a solution containing the secondary monomer and crosslinkers. After the latter species are absorbed into the primary network, the absorbed monomers are polymerized to form the secondary polymer chains, which then can undergo further crosslinking to form an IPN, or undergo inter-chain exchange with the existing network to form a RCN. The swelling and elastic properties of the IPN and RCN networks can be tailored by modifying the monomer and crosslinker concentrations in the surrounding solution, or by tuning the enthalpic interactions between the primary polymer, secondary monomer and solvent through a proper choice of chemistry. This process can be used repeatedly to fabricate gels with a range of mechanical properties from stiff, rigid materials to soft, flexible networks, allowing the method to meet the materials requirements of a variety of applications.


Subject(s)
Hydrogels , Tissue Engineering , Polymerization , Polymers , Tissue Scaffolds
3.
Phys Rev E ; 94(2-1): 022406, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27627334

ABSTRACT

We study the spreading of a bacterial colony undergoing turbulentlike collective motion. We present two minimalistic models to investigate the interplay between population growth and coherent structures arising from turbulence. Using direct numerical simulation of the proposed models we find that turbulence has two prominent effects on the spatial growth of the colony: (a) the front speed is enhanced, and (b) the front gets crumpled. Both these effects, which we highlight by using statistical tools, are markedly different in our two models. We also show that the crumpled front structure and the passive scalar fronts in random flows are related in certain regimes.


Subject(s)
Models, Biological , Motion , Bacteria , Bacterial Physiological Phenomena , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...