Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(17): 22066-22078, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629710

ABSTRACT

Development of crystalline porous materials for selective CO2 adsorption and storage is in high demand to boost the carbon capture and storage (CCS) technology. In this regard, we have developed a ß-keto enamine-based covalent organic framework (VM-COF) via the Schiff base polycondensation technique. The as-synthesized VM-COF exhibited excellent thermal and chemical stability along with a very high surface area (1258 m2 g-1) and a high CO2 adsorption capacity (3.58 mmol g-1) at room temperature (298 K). The CO2/CH4 and CO2/H2 selectivities by the IAST method were calculated to be 10.9 and 881.7, respectively, which were further experimentally supported by breakthrough analysis. Moreover, theoretical investigations revealed that the carbonyl-rich sites in a polymeric backbone have higher CO2 binding affinity along with very high binding energy (-39.44 KJ mol-1) compared to other aromatic carbon-rich sites. Intrigued by the best CO2 adsorption capacity and high CO2 selectivity, we have utilized the VM-COF for biogas purification produced by the biofermentation of municipal waste. Compared with the commercially available activated carbon, VM-COF exhibited much better purification ability. This opens up a new opportunity for the creation of functionalized nanoporous materials for the large-scale purification of waste-generated biogases to address the challenges associated with energy and the environment.

2.
Chem Asian J ; 19(4): e202300933, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38241138

ABSTRACT

The emergence of non-precious metal-based robust and economic bifunctional oxygen electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for the rational design of commercial rechargeable Zn-air batteries (RZAB) with safe energy conversion and storage systems. Herein, a facile strategy to fabricate a cost-efficient, bifunctional oxygen electrocatalyst Fe3 C/Fe decorated N doped carbon (FeC-700, the catalyst prepared at carbinization temperature of 700 °C) with a unique structure has been developed by carbonization of a single source precursor, tetrabutylammonium tetrachloroferrate(III) complex. The ORR and OER activity revealed excellent performance (ΔE=0.77 V) of the FeC-700 electrocatalyst, comparable to commercial Pt/C and RuO2, respectively. The designed temperature-tuneable structure provided sufficiently accessible active sites for the continuous passage of electrons by shortening the mass transfer pathway, leading to extremely durable electrocatalysts with high ECSA and amazing charge transfer performance. Remarkably, the assembled Zn-air batteries with the FeC-700 catalyst as the bifunctional air electrode delivers gratifying charging-discharging ability with an impressive power density of 134 mW cm-2 with a long lifespan, demonstrating prodigious possibilities for practical application.

3.
Sci Rep ; 13(1): 20356, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37990047

ABSTRACT

This paper deals with the second quantization of interacting relativistic Fermionic and Bosonic fields in the arena of discrete phase space and continuous time. The mathematical formulation involves partial difference equations. The corresponding Feynman diagrams and a new [Formula: see text]-matrix theory is developed. In the special case of proton-proton Møller scattering via an exchange of a neutral meson, the explicit second order element [Formula: see text] is deduced. In the approximation of very low external three-momenta, a new Yukawa potential is explicitly derived from [Formula: see text]. Moreover, it is rigorously proved that this new Yukawa potential is divergence-free. The mass parameter of the exchanged meson may be set to zero to obtain a type of scalar Boson exchange between hypothetical Fermions. This provides a limiting case of a new Coulomb type potential directly from the new singularity free Yukawa potential. A divergence-free Coulomb potential between two Fermions at two discrete points is shown to be proportional to the Euler beta function. Within this relativistic discrete phase space continuous time, a single quanta is shown to occupy the hyper-tori [Formula: see text] where [Formula: see text] is a circle of radius [Formula: see text].

4.
Trop Parasitol ; 13(2): 121-125, 2023.
Article in English | MEDLINE | ID: mdl-37860609

ABSTRACT

Immunocompromised patients with human immunodeficiency virus (HIV) infection are prone to multiple infections, of which parasitic infections are an important cause. Parasitic protozoal infections - both by common and rare protozoa are documented in such patients. Here, we report a rare and interesting case of five protozoal infections affecting a single HIV-infected person at the same time of initial presentation. A 64-years-male came to us with complaints of chronic diarrhea for 6 months. He was investigated and found to be positive for HIV I. His stool examination revealed cysts of Entameba histolytica and Giardia lamblia and oocysts of Cryptosporidium species and Cystoisospora species. His toxoplasma IgG was also positive in high titer. The patient was medically diagnosed and was treated with medications as clinically prescribed - antiretroviral therapy was initiated and he was discharged in due course. A total of five protozoal infections were documented affecting a single person - newly diagnosed immunocompromised male, which by sheer qualitative count of patient case histories, indeed is a rare case reported in the medical literature.

5.
ACS Appl Mater Interfaces ; 15(41): 48326-48335, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37788172

ABSTRACT

A large number of scientific investigations are needed for developing a sustainable solid sorbent material for precombustion CO2 capture in the integrated gasification combined cycle (IGCC) that is accountable for the industrial coproduction of hydrogen and electricity. Keeping in mind the industrially relevant conditions (high pressure, high temperature, and humidity) as well as good CO2/H2 selectivity, we explored a series of sorbent materials. An all-rounder player in this game is the porous organic polymers (POPs) that are thermally and chemically stable, easily scalable, and precisely tunable. In the present investigation, we successfully synthesized two nitrogen-rich POPs by extended Schiff-base condensation reactions. Among these two porous polymers, TBAL-POP-2 exhibits high CO2 uptake capacity at 30 bar pressure (57.2, 18.7, and 15.9 mmol g-1 at 273, 298, and 313 K temperatures, respectively). CO2/H2 selectivities of TBAL-POP-1 and 2 at 25 °C are 434.35 and 477.93, respectively. On the other hand, at 313 K the CO2/H2 selectivities of TBAL-POP-1 and 2 are 296.92 and 421.58, respectively. Another important feature to win the race in the search of good sorbents is CO2 capture capacity at room temperature, which is very high for TBAL-POP-2 (15.61 mmol g-1 at 298 K for 30 to 1 bar pressure swing). High BET surface area and good mesopore volume along with a large nitrogen content in the framework make TBAL-POP-2 an excellent sorbent material for precombustion CO2 capture and H2 purification.

6.
Inorg Chem ; 62(32): 12832-12842, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37527444

ABSTRACT

Methanol oxidation reaction (MOR) is a perfect alternative to the conventional oxygen evolution reaction (OER), generally utilized as the anode reaction for hydrogen generation via the electrochemical water splitting method. Moreover, MOR is also relevant to direct methanol fuel cells (DMFCs). These facts motivate the researchers to develop economical and efficient electrocatalysts for MOR. Herein, we have introduced an ethylene glycol-linked tetraphenyl porphyrin-based (EG-POR) covalent organic polymer (COP). The Ni(II)-incorporated EG-POR material Ni-EG-POR displayed excellent OER and MOR activities in an alkaline medium. The materials were thoroughly characterized using 13C solid-state NMR, Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) surface area analyzer, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analyzer (TGA), and powder X-ray diffraction (PXRD) techniques. These organic-inorganic hybrid materials showed high chemical and thermal stability. Ni-EG-POR requires an overpotential of 400 mV (vs RHE) in OER and 190 mV (vs RHE) in MOR to achieve a current density of 10 mA cm-2. In addition, the catalyst also showed excellent chronoamperometric and chronopotentiometric stability, indicating that the catalyst can provide stable current over a longer period and its potential as a non-noble metal MOR catalyst.

7.
Chem Commun (Camb) ; 59(34): 5067-5070, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37021353

ABSTRACT

We have introduced a Friedel-Crafts alkylation strategy of a Ni-salphen complex as derived from 2-hydroxy-5-methoxybenzaldehyde, an isomer of biomass derived vanillin, to construct a Ni-salphen based porous organic polymer (Ni@T-POP). The X-ray absorption spectroscopy (XAS) analysis revealed the existence of Ni-N2O2 core sites in the Ni@T-POP framework, which demonstrates unprecedented catalytic efficiency towards oxidative decontamination of sulfur mustards (HD's) compared to its complex precursor.

8.
Chem Asian J ; 18(1): e202200970, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36373678

ABSTRACT

Herein, we have designed and synthesized two heteroatom (N, O) rich covalent organic frameworks (COF), PD-COF and TF-COF, respectively, to demonstrate their relative effect on CO2 adsorption capacity and also CO2 /N2 selectivity. Compared to the non-fluorinated PD-COF (BET surface area 805 m2 g-1 , total pore volume 0.3647 ccg-1 ), a decrease in BET surface area and also pore volume have been observed for fluorinated TF-COF due to the incorporation of fluorine to the porous framework (BET surface area 451 m2 g-1 , total pore volume 0.2978 ccg-1 ). This fact leads to an enormous decrease in the CO2 adsorption capacity and CO2 /N2 selectivity of TF-COF, though it shows stronger affinity towards CO2 with a Qst of 37.76 KJ/mol. The more CO2 adsorption capacity by PD-COF can be attributed to the large specific surface area with considerable amount of micropore volume compared to the TF-COF. Further, PD-COF exhibited CO2 /N2 selectivity of 16.8, higher than that of TF-COF (CO2 /N2 selectivity 13.4).

9.
ACS Appl Mater Interfaces ; 14(33): 37620-37636, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35944163

ABSTRACT

Anthropogenic carbon dioxide (CO2) emission is soaring day by day due to fossil fuel combustion to fulfill the daily energy requirements of our society. The CO2 concentration should be stabilized to evade the deadly consequences of it, as climate change is one of the major consequences of greenhouse gas emission. Chemical fixation of CO2 to other value-added chemicals requires high energy due to its stability at the highest oxidation state, creating a tremendous challenge to the scientific community to fix CO2 and prevent global warming caused by it. In this work, we have introduced a novel monomer-assembly-directed strategy to design va isible-light-responsive conjugated Zn-metalated porous organic polymer (Zn@MA-POP) with a dynamic covalent acyl hydrazone linkage, via a one-pot condensation between the self-assembled monomer 1,3,5-benzenetricarbohydrazide (TPH) and a Zn complex (Zn@COM). We have successfully explored as-synthesized Zn@MA-POP as a potential photocatalyst in visible-light-driven CO2 photofixation with styrene epoxide (SE) to styrene carbonate (SC). Nearly 90% desired product (SC) selectivity has been achieved with our Zn@MA-POP, which is significantly better than that for the conventional Zn@TiO2 (∼29%) and Zn@gC3N4 (∼26%) photocatalytic systems. The excellent light-harvesting nature with longer lifetime minimizes the radiative recombination rate of photoexcited electrons as a result of extended π-conjugation in Zn@MA-POP and increased CO2 uptake, eventually boosting the photocatalytic activity. Local structural results from a first-shell EXAFS analysis reveals the existence of a Zn(N2O4) core structure in Zn@MA-POP, which plays a pivotal role in activating the epoxide ring as well as capturing the CO2 molecules. An in-depth study of the POP-CO2 interaction via a density functional theory (DFT) analysis reveals two feasible interactions, Zn@MA-POP-CO2-A and Zn@MA-POP-CO2-B, of which the latter has a lower relative energy of 0.90 kcal/mol in comparison to the former. A density of states (DOS) calculation demonstrates the lowering of the LUMO energy (EL) of Zn@MA-POP by 0.35 and 0.42 eV, respectively, for the two feasible interactions, in comparison to Zn@COM. Moreover, the potential energy profile also unveils the spontaneous and exergonic photoconversion pathways for the SE to SC conversion. Our contribution is expected to spur further interest in the precise design of visible-light-active conjugated porous organic polymers for CO2 photofixation to value-added chemicals.

10.
Dalton Trans ; 50(14): 4765-4771, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33877175

ABSTRACT

With the rapid advancements in synthetic strategies, the field of heterogeneous catalysis has expanded enormously over the last few decades, and today it is one of the foremost areas in energy and environmental research. Various templating and non-templating routes for designing porous nanomaterial-based catalysts starting from precursor building blocks are highlighted here. CO2 and biomass are two major abundant resources that can be utilized as feedstocks for various heterogeneous catalytic processes. These are described in brief, together with environmental clean-up applications and future perspectives for addressing environmental issues.

SELECTION OF CITATIONS
SEARCH DETAIL
...