Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Cell Dev Biol ; 161-162: 22-30, 2024.
Article in English | MEDLINE | ID: mdl-38564842

ABSTRACT

Modern precision sequencing techniques have established humans as a holobiont that live in symbiosis with the microbiome. Microbes play an active role throughout the life of a human ranging from metabolism and immunity to disease tolerance. Hence, it is of utmost significance to study the eukaryotic host in conjunction with the microbial antigens to obtain a complete picture of the host-microbiome crosstalk. Previous attempts at profiling host-microbiome interactions have been either superficial or been attempted to catalogue eukaryotic transcriptomic profile and microbial communities in isolation. Additionally, the nature of such immune-microbial interactions is not random but spatially organised. Hence, for a holistic clinical understanding of the interplay between hosts and microbiota, it's imperative to concurrently analyze both microbial and host genetic information, ensuring the preservation of their spatial integrity. Capturing these interactions as a snapshot in time at their site of action has the potential to transform our understanding of how microbes impact human health. In examining early-life microbial impacts, the limited presence of communities compels analysis within reduced biomass frameworks. However, with the advent of spatial transcriptomics we can address this challenge and expand our horizons of understanding these interactions in detail. In the long run, simultaneous spatial profiling of host-microbiome dialogues can have enormous clinical implications especially in gaining mechanistic insights into the disease prognosis of localised infections and inflammation. This review addresses the lacunae in host-microbiome research and highlights the importance of profiling them together to map their interactions while preserving their spatial context.


Subject(s)
Microbiota , Symbiosis , Humans , Bacteria/genetics , Microbiota/genetics , Microbial Interactions
2.
RSC Adv ; 10(23): 13708-13716, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-35493001

ABSTRACT

Nickel oxide nanoparticles having a mean particle size of 19.5 nm were synthesized by a simple chemical method. Those nanoparticles exhibited a spin glass like behaviour at a temperature around 9 K. The samples showed electronic conduction arising out of small polaron hopping between the Ni2+ and Ni3+ species present in the material. A large magnetodielectric parameter with a maximum value of 52.2% was observed in the sample at room temperature which resulted from the Maxwell-Wagner polarization effect. This was explained as arising due to a large negative magnetoresistance caused by spin polarized electron hopping between Ni2+ and Ni3+ sites with the consequential formation of space charge polarization at the interfaces of the NiO nanoparticles. This was substantiated by direct measurement of magnetoresistance of the samples which gave identical results. It is believed that negative magnetoresistance after direct measurement occurred due to the interaction between ferromagnetic and antiferromagnetic phases and the value was 37%, the highest reported in the literature so far. As a result of the presence of Ni3+ ions, antiferromagnetic phase and ferromagnetic like behaviour of NiO nanoparticles gave higher magnetization than other reported nanoparticles. Such large values of magnetoresistance of the samples will make the material useful as an ideal magnetic sensor.

3.
ACS Omega ; 2(1): 283-289, 2017 Jan 31.
Article in English | MEDLINE | ID: mdl-31457228

ABSTRACT

Nickel oxide nanoparticles of diameter ∼21 nm were prepared by a sol-gel method using the triblock copolymer poly(ethylene glycol)-b-(propylene glycol)-b-(ethylene glycol). X-ray photoelectron spectroscopy analysis showed the presence of Ni2+ and Ni3+ ions in the material. The electrical conductivity of this material was due to small polaron hopping between Ni2+ and Ni3+ sites. The magnetization shown by these nanoparticles was much higher than that reported in the literature. This is ascribed to the presence of Ni3+ ions with uncompensated spin moments. Spin-glass behavior was exhibited by the material at 10.7 K. The electrochemical characterization of electrodes comprising of these NiO nanoparticles using cyclic voltammetric measurements showed a specific capacitance value of 810 F/g, the highest reported for this material. These materials will thus form one of the useful multifunctional systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...