Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Biomed Phys Eng Express ; 10(4)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38744257

ABSTRACT

Being able to image the microstructure of growth cartilage is important for understanding the onset and progression of diseases such as osteochondrosis and osteoarthritis, as well as for developing new treatments and implants. Studies of cartilage using conventional optical brightfield microscopy rely heavily on histological staining, where the added chemicals provide tissue-specific colours. Other microscopy contrast mechanisms include polarization, phase- and scattering contrast, enabling non-stained or 'label-free' imaging that significantly simplifies the sample preparation, thereby also reducing the risk of artefacts. Traditional high-performance microscopes tend to be both bulky and expensive.Computational imagingdenotes a range of techniques where computers with dedicated algorithms are used as an integral part of the image formation process. Computational imaging offers many advantages like 3D measurements, aberration correction and quantitative phase contrast, often combined with comparably cheap and compact hardware. X-ray microscopy is also progressing rapidly, in certain ways trailing the development of optical microscopy. In this study, we first briefly review the structures of growth cartilage and relevant microscopy characterization techniques, with an emphasis on Fourier ptychographic microscopy (FPM) and advanced x-ray microscopies. We next demonstrate with our own results computational imaging through FPM and compare the images with hematoxylin eosin and saffron (HES)-stained histology. Zernike phase contrast, and the nonlinear optical microscopy techniques of second harmonic generation (SHG) and two-photon excitation fluorescence (TPEF) are explored. Furthermore, X-ray attenuation-, phase- and diffraction-contrast computed tomography (CT) images of the very same sample are presented for comparisons. Future perspectives on the links to artificial intelligence, dynamic studies andin vivopossibilities conclude the article.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Microscopy , Imaging, Three-Dimensional/methods , Humans , Microscopy/methods , Animals , Image Processing, Computer-Assisted/methods , Multimodal Imaging/methods , Fourier Analysis
2.
Proc Natl Acad Sci U S A ; 121(1): e2305890120, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38147554

ABSTRACT

Slow multiphase flow in porous media is intriguing because its underlying dynamics is almost deterministic, yet depends on a hierarchy of spatiotemporal processes. There has been great progress in the experimental study of such multiphase flows, but three-dimensional (3D) microscopy methods probing the pore-scale fluid dynamics with millisecond resolution have been lacking. Yet, it is precisely at these length and time scales that the crucial pore-filling events known as Haines jumps take place. Here, we report four-dimensional (4D) (3D + time) observations of multiphase flow in a consolidated porous medium as captured in situ by stroboscopic X-ray micro-tomography. With a total duration of 6.5 s and 2 kHz frame rate, our experiments provide unprecedented access to the multiscale liquid dynamics. Our tomography strategy relies on the fact that Haines jumps, although irregularly spaced in time, are almost deterministic, and therefore repeatable during imbibition-drainage cycling. We studied the time-dependent flow pattern in a porous medium consisting of sintered glass shards. Exploiting the repeatability, we could combine the radiographic projections recorded under different angles during successive cycles into a 3D movie, allowing us to reconstruct pore-scale events, such as Haines jumps, with a spatiotemporal resolution that is two orders of magnitude higher than was hitherto possible. This high resolution allows us to explore the detailed interfacial dynamics during drainage, including fluid-front displacements and velocities. Our experimental approach opens the way to the study of fast, yet deterministic mesoscopic processes also other than flow in porous media.

3.
J Am Chem Soc ; 144(6): 2546-2555, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35129329

ABSTRACT

The development of systems capable of responding to environmental changes, such as humidity, requires the design and assembly of highly sensitive and efficiently transducing elements. Such a challenge can be mastered only by disentangling the role played by each component of the responsive system, thus ultimately achieving high performance by optimizing the synergistic contribution of all functional elements. Here, we designed and synthesized a novel [1]benzothieno[3,2-b][1]benzothiophene derivative equipped with hydrophilic oligoethylene glycol lateral chains (OEG-BTBT) that can electrically transduce subtle changes in ambient humidity with high current ratios (>104) at low voltages (2 V), reaching state-of-the-art performance. Multiscale structural, spectroscopical, and electrical characterizations were employed to elucidate the role of each device constituent, viz., the active material's BTBT core and OEG side chains, and the device interfaces. While the BTBT molecular core promotes the self-assembly of (semi)conducting crystalline films, its OEG side chains are prone to adsorb ambient moisture. These chains act as hotspots for hydrogen bonding with atmospheric water molecules that locally dissociate when a bias voltage is applied, resulting in a mixed electronic/protonic long-range conduction throughout the film. Due to the OEG-BTBT molecules' orientation with respect to the surface and structural defects within the film, water molecules can access the humidity-sensitive sites of the SiO2 substrate surface, whose hydrophilicity can be tuned for an improved device response. The synergistic chemical engineering of materials and interfaces is thus key for designing highly sensitive humidity-responsive electrical devices whose mechanism relies on the interplay of electron and proton transport.

4.
IUCrJ ; 8(Pt 5): 747-756, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34584736

ABSTRACT

Shales have a complex mineralogy with structural features spanning several length scales, making them notoriously difficult to fully understand. Conventional attenuation-based X-ray computed tomography (CT) measures density differences, which, owing to the heterogeneity and sub-resolution features in shales, makes reliable interpretation of shale images a challenging task. CT based on X-ray diffraction (XRD-CT), rather than intensity attenuation, is becoming a well established technique for non-destructive 3D imaging, and is especially suited for heterogeneous and hierarchical materials. XRD patterns contain information about the mineral crystal structure, and crucially also crystallite orientation. Here, we report on the use of orientational imaging using XRD-CT to study crystallite-orientation distributions in a sample of Pierre shale. Diffraction-contrast CT data for a shale sample measured with its bedding-plane normal aligned parallel to a single tomographic axis perpendicular to the incoming X-ray beam are discussed, and the spatial density and orientation distribution of clay minerals in the sample are described. Finally, the scattering properties of highly attenuating inclusions in the shale bulk are studied, which are identified to contain pyrite and clinochlore. A path forward is then outlined for systematically improving the structural description of shales.

5.
Sci Rep ; 11(1): 2144, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33495539

ABSTRACT

While a detailed knowledge of the hierarchical structure and morphology of the extracellular matrix is considered crucial for understanding the physiological and mechanical properties of bone and cartilage, the orientation of collagen fibres and carbonated hydroxyapatite (HA) crystallites remains a debated topic. Conventional microscopy techniques for orientational imaging require destructive sample sectioning, which both precludes further studies of the intact sample and potentially changes the microstructure. In this work, we use X-ray diffraction tensor tomography to image non-destructively in 3D the HA orientation in a medial femoral condyle of a piglet. By exploiting the anisotropic HA diffraction signal, 3D maps showing systematic local variations of the HA crystallite orientation in the growing subchondral bone and in the adjacent mineralized growth cartilage are obtained. Orientation maps of HA crystallites over a large field of view (~ 3 × 3 × 3 mm3) close to the ossification (bone-growth) front are compared with high-resolution X-ray propagation phase-contrast computed tomography images. The HA crystallites are found to predominantly orient with their crystallite c-axis directed towards the ossification front. Distinct patterns of HA preferred orientation are found in the vicinity of cartilage canals protruding from the subchondral bone. The demonstrated ability of retrieving 3D orientation maps of bone-cartilage structures is expected to give a better understanding of the physiological properties of bones, including their propensity for bone-cartilage diseases.


Subject(s)
Calcification, Physiologic , Durapatite/chemistry , Femur/diagnostic imaging , Femur/physiology , Tomography, X-Ray , X-Ray Diffraction , Animals , Swine
6.
J Appl Crystallogr ; 53(Pt 6): 1562-1569, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33304225

ABSTRACT

Despite the abundance of shales in the Earth's crust and their industrial and environmental importance, their microscale physical properties are poorly understood, owing to the presence of many structurally related mineral phases and a porous network structure spanning several length scales. Here, the use of coherent X-ray diffraction imaging (CXDI) to study the internal structure of microscopic shale fragments is demonstrated. Simultaneous wide-angle X-ray diffraction (WAXD) measurement facilitated the study of the mineralogy of the shale microparticles. It was possible to identify pyrite nanocrystals as inclusions in the quartz-clay matrix and the volume of closed unconnected pores was estimated. The combined CXDI-WAXD analysis enabled the establishment of a correlation between sample morphology and crystallite shape and size. The results highlight the potential of the combined CXDI-WAXD approach as an upcoming imaging modality for 3D nanoscale studies of shales and other geological formations via serial measurements of microscopic fragments.

7.
Langmuir ; 35(22): 7161-7168, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31074993

ABSTRACT

This work presents a simple, fast (20 min treatment), inexpensive, and highly efficient method for synthesizing nitrogen-doped titanium dioxide (N-TiO2) as an enhanced visible light photocatalyst. In this study, N-TiO2 coatings were fabricated by atmospheric pressure dielectric barrier discharge (DBD) at room temperature. The composition and the chemical bonds of the TiO2 and N-TiO2 coatings were characterized by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). The results indicate that the nitrogen element has doped the TiO2 lattice, which was further confirmed by Raman spectroscopy and grazing incidence X-ray diffraction (GIXRD). The doping mechanism was investigated using OES to study the plasma properties under different conditions. It suggests that the NH radicals play a key role in doping TiO2. The concentration of nitrogen in the N-TiO2 coatings can be controlled by changing the concentration of NH3 in the plasma or the applied power to adjust the concentration of NH radicals in the plasma. The band gap of N-TiO2 was reduced after NH3/Ar plasma treatment from 3.25 to 3.18 eV. Consequently, the N-TiO2 coating showed enhanced photocatalytic activity under white-light-emitting-diode (LED) irradiation. The photocatalytic degradation rate for the N-TiO2 coating was about 1.4 times higher than that of the undoped TiO2 coating.

8.
Chempluschem ; 84(9): 1263-1269, 2019 09.
Article in English | MEDLINE | ID: mdl-31944036

ABSTRACT

The molecular properties of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) are vulnerable to structural modifications, which in turn are determined by the functionalization of the backbone. Hence versatile synthetic strategies are needed to discover the properties of this molecule. To address this, we have attempted heteroatom (oxygen) functionalization of BTBT by a concise and easily scalable synthesis. Fourfold hydroxy-substituted BTBT is the key intermediate, from which the compounds 2,3,7,8-bis(ethylenedioxy)-[1]benzothieno[3,2-b][1]benzothiophene and 2,3,7,8-bis(methylenedioxy)-[1]benzothieno[3,2-b][1]benzothiophene are synthesized. The difference in ether functionalities on the BTBT scaffold influences the ionisation potential values substantially. The crystal structure reveals the transformation of the herringbone motif in bare BTBT towards π-stacked columns in the newly synthesized derivatives. The results are further justified by the simulated HOMO levels of the model compound.

9.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 1): 71-78, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-32830780

ABSTRACT

In this study, the nature and characteristics of the intramolecular and intermolecular interactions in crystal structures of the fluoro-substituted 7,7,8,8-tetracyanoquinodimethane (TCNQ) family of molecules, i.e. Fx-TCNQ (x = 0, 2, 4), are explored. The molecular geometry of the reported crystal structures is directly dependent on the degree of fluorination in the molecule, which consequently also results in the presence of an intramolecular N[triple-bond]C...F-C π-hole tetrel bond. Apart from this, the energy framework analysis performed along the respective transport planes provides new insights into the energetic distribution in this class of molecules.

10.
J Phys Chem Lett ; 8(21): 5444-5449, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29058437

ABSTRACT

Terahertz electromodulation spectroscopy provides insight into the material-inherent transport properties of charge carriers in organic semiconductors. Experiments on didodecyl[1]benzothieno[3,2-b][1]benzothiophene (C12-BTBT-C12) devices yield for holes an intraband mobility of 9 cm2 V-1 s-1. The short duration of the THz pulses advances the understanding of the hole transport on the molecular scale. The efficient screening of Coulomb potentials leads to a collective response of the hole gas to external fields, which can be well described by the Drude model. Bias stress of the devices generates deep traps that capture mobile holes. Although the resulting polarization across the device hinders the injection of mobile holes, the hole mobilities are not affected.

11.
ACS Appl Mater Interfaces ; 8(32): 20916-27, 2016 Aug 17.
Article in English | MEDLINE | ID: mdl-27434658

ABSTRACT

Four different polymorphic conformations of diethyl 5,5'-[5,5'-[2,5-bis(2-ethylhexyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrole-1,4-diyl]bis(thiophene-5,2-diyl)]difuran-2-carboxylate (DPP-(CF)2), namely, DPP-(CF)2-α, DPP-(CF)2-ß, DPP-(CF)2-γ, and DPP-(CF)2-ω, were identified from X-ray diffraction analysis conducted on their thin films and single crystals. Highly crystalline and well-textured thin films of these four polymorphs were successfully prepared via postgrowth solvent vapor and thermal annealing treatments to investigate the polymorphic phase-dependent optical and electrical properties of DPP-(CF)2. Interestingly, during the phase transition from DPP-(CF)2-α to DPP-(CF)2-ω, the optical band gap decreases from 1.75 to 1.5 eV because of the enhanced π-π interaction between the neighboring molecules. Except for DPP-(CF)2-γ, the other three phases show ambipolar charge transport. Although DPP-(CF)2-ß and DPP-(CF)2-γ exhibit a similar way of packing, a small increment in the π-π-stacking distance (0.006 Å) and twist conformation of the grafted electron-donating moieties of DPP-(CF)2-γ are found to reduce its hole mobility.

12.
Adv Mater ; 28(33): 7106-14, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27226066

ABSTRACT

The structural and electronic properties of four isomers of didodecyl[1]-benzothieno[3,2-b][1]benzothiophene (C12-BTBT) have been investigated. Results show the strong impact of the molecular packing on charge carrier transport and electronic polarization properties. Field-induced time-resolved microwave conductivity measurements unravel an unprecedented high average interfacial mobility of 170 cm(2) V(-1) s(-1) for the 2,7-isomer, holding great promise for the field of organic electronics.

13.
Org Lett ; 15(2): 302-5, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23302020

ABSTRACT

Synthesis, isolation, and characterization of isomerically pure syn- and anti-anthradiindole (ADI) derivatives are described. The anti- and syn-ADI structures are demonstrated by (13)C NMR spectroscopy and by single-crystal X-ray diffraction. The spectroscopic and electrochemical properties as well as the stability of these newly synthesized π-conjugated systems are evaluated and supported by quantum-chemical calculations.

14.
J Pharm Biomed Anal ; 70: 280-7, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22877875

ABSTRACT

Tris(hydroxymethyl) aminomethane (tris) salt of API ramipril was synthesized, and characterized by FTIR, TG-DSC and ab initio X-ray powder structure analysis. The compound, ramipril-tris (II), crystallizes in the monoclinic space group P2(1) with a=24.3341(15), b=6.4645(5), c=9.5357(7) Å, ß=96.917(3)° and V=1489.1(3) Å(3). The crystal structure has been determined from laboratory X-ray powder diffraction data using direct space global optimization strategy (simulated annealing) followed by the Rietveld refinement. A network of intermolecular OH…O, CH…N and CH…O hydrogen bonds between the ramipril-ramipril, tris-tris and ramipril-tris components in the compound generates a two-dimensional molecular assembly in (110) plane. A comparative study of solid-state stabilities of ramipril-tris (II) with that of ramipril (I) and ramipril-erbumine (III) indicates that ramipril-tris (II) is the most stable one among the three, and the conversion to impurity D after 72 h at 80 °C is only 1.5%. The solution phase analysis at different pH values also reveals a greater stability of ramipril-tris (II) over ramipril (I).


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemical synthesis , Crystallography, X-Ray , Powder Diffraction , Ramipril/chemical synthesis , Technology, Pharmaceutical/methods , Tromethamine/chemical synthesis , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Chromatography, High Pressure Liquid , Crystallization , Drug Stability , Hot Temperature , Hydrogen Bonding , Hydrogen-Ion Concentration , Models, Molecular , Molecular Structure , Ramipril/analogs & derivatives , Spectroscopy, Fourier Transform Infrared , Time Factors , Tromethamine/analogs & derivatives
15.
Analyst ; 137(17): 3975-81, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22785321

ABSTRACT

An efficient water soluble fluorescent Al(3+) receptor, 1-[[(2-furanylmethyl)imino]methyl]-2-naphthol (1-H) was synthesized and characterized by physico-chemical and spectroscopic tools along with single crystal X-ray crystallography. High selectivity and affinity of 1-H towards Al(3+) in HEPES buffer (DMSO/water: 1/100) of pH 7.4 at 25 °C showed it to be suitable for detection of intracellular Al(3+) by fluorescence microscopy. Metal ions, viz. alkali (Na(+), K(+)), alkaline earth (Mg(2+), Ca(2+)), and transition-metal ions (Ni(2+), Zn(2+), Cd(2+), Co(2+), Cu(2+), Fe(3+), Cr(3+/6+), Hg(2+)) and Pb(2+), Ag(+) did not interfere. The lowest detection limit for Al(3+) was calculated to be 6.03 × 10(-7) M in 100 mM HEPES buffer (DMSO/water: 1/100). Theoretical calculations have also been included in support of the configuration of the probe-aluminium complex.


Subject(s)
Aluminum/analysis , Colorimetry , Fluorescent Dyes/chemistry , Microscopy, Fluorescence , Water/chemistry , Coordination Complexes/chemistry , Crystallography, X-Ray , Fluorescent Dyes/chemical synthesis , HeLa Cells , Humans , Hydrogen-Ion Concentration , Ions/chemistry , Metals/chemistry , Molecular Conformation , Naphthols/chemical synthesis , Naphthols/chemistry
16.
Analyst ; 137(14): 3335-42, 2012 Jul 21.
Article in English | MEDLINE | ID: mdl-22673561

ABSTRACT

A newly designed probe, 6-thiophen-2-yl-5,6-dihydrobenzo[4,5]imidazo-[1,2-c] quinazoline (HL(1)) behaves as a highly selective ratiometric fluorescent sensor for Fe(2+) at pH 4.0-5.0 and Fe(3+) at pH 6.5-8.0 in acetonitrile-HEPES buffer (1/4) (v/v) medium. A decrease in fluorescence at 412 nm and increase in fluorescence at 472 nm with an isoemissive point at 436 nm with the addition of Fe(2+) salt solution is due to the formation of mononuclear Fe(2+) complex [Fe(II)(HL)(ClO(4))(2)(CH(3)CN)(2)] (1) in acetonitrile-HEPES buffer (100 mM, 1/4, v/v) at pH 4.5 and a decrease in fluorescence at 412 nm and increase in fluorescence at 482 nm with an isoemissive point at 445 nm during titration by Fe(3+) salt due to the formation of binary Fe(3+) complex, [Fe(III)(L)(2)(ClO(4))(H(2)O)] (2) with co-solvent at biological pH 7.4 have been established. Binding constants (K(a)) in the solution state were calculated to be 3.88 × 10(5) M(-1) for Fe(2+) and 0.21 × 10(3) M(-1/2) for Fe(3+) and ratiometric detection limits for Fe(2+) and Fe(3+) were found to be 2.0 µM and 3.5 µM, respectively. The probe is a "naked eye" chemosensor for two states of iron. Theoretical calculations were studied to establish the configurations of probe-iron complexes. The sensor is efficient for detecting Fe(3+)in vitro by developing a good image of the biological organelles.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Iron/analysis , Iron/chemistry , Absorption , Cell Survival , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Iron/metabolism , Models, Molecular , Molecular Conformation , Molecular Imaging , Oxidation-Reduction , Quinazolines/chemical synthesis , Quinazolines/chemistry , Spectrometry, Fluorescence
17.
J Org Chem ; 77(6): 2689-702, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22397458

ABSTRACT

Synthesis of selenoxo peptides by the treatment of N(α)-protected peptide esters with a combination of PCl(5) and LiAlHSeH is delineated. The method is simple, high-yielding, and free from racemization. Thus obtained selenoxo peptides are used as units for N-terminal chain extension through N(α)-deprotection/coupling to yield peptide-selenoxo peptide hybrids. Multiple selenation is demonstrated by conversion of two peptide bonds of tripeptides into selenoxo peptide bonds. Amino acid derived arylamides are also converted into aryl selenoamides. C(6)H(5)-CSeNH-Val-OMe 8f is obtained as single crystal, and its structure was determined through X-ray diffraction study.


Subject(s)
Aluminum Compounds/chemistry , Lithium Compounds/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Selenium Compounds/chemistry , Esters , Models, Molecular , X-Ray Diffraction
18.
Org Lett ; 13(17): 4510-3, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21827136

ABSTRACT

A new probe, 3-[(3-benzyloxypyridin-2-ylimino)methyl]-2-hydroxy-5-methylbenzaldehyde (1-H) behaves as a highly selective fluorescent pH sensor in a Britton-Robinson buffer at 25 °C. The pH titrations show a 250-fold increase in fluorescence intensity within the pH range of 4.2 to 8.3 with a pK(a) value of 6.63 which is valuable for studying many of the biological organelles.


Subject(s)
Fluorescent Dyes/chemistry , Schiff Bases/chemistry , Crystallography, X-Ray , Hydrogen-Ion Concentration , Models, Molecular , Molecular Structure , Quantum Theory , Stereoisomerism
19.
J Phys Chem B ; 115(8): 1760-6, 2011 Mar 03.
Article in English | MEDLINE | ID: mdl-21291265

ABSTRACT

The molecular dynamics simulations and electronic structure evolution of a A-DNA decamer, d(CCCGATCGGG)(2), in the presence and absence of [Co(NH(3))(6)](3+) ions have been investigated. In both cases, the results of 2.5 ns MD simulation indicate a A-DNA→B-DNA transition. Ab initio DFT calculations were performed on a series of conformations representing the A→B transitions to reveal the dynamical behavior of the electronic structure of the decamer. The results suggest that the conformational parameters as well as the surrounding environment have no direct correlation with the electronic structures. Instead, the thermal fluctuations play an important role in the electronic structure of the present DNA system.


Subject(s)
Molecular Dynamics Simulation , Oligodeoxyribonucleotides/chemistry , Base Sequence , Cobalt/chemistry , Quantum Theory
20.
Inorg Chem ; 50(4): 1213-9, 2011 Feb 21.
Article in English | MEDLINE | ID: mdl-21247079

ABSTRACT

A new 2,6-bis(5,6-dihydrobenzo[4,5]imidazo[1,2-c]quinazolin-6-yl)-4-methylphenol (1) serves as a highly selective and sensitive fluorescent probe for Zn(2+) in a HEPES buffer (50 mM, DMSO:water = 1:9 (v/v), pH = 7.2) at 25 °C. The increase in fluorescence in the presence of Zn(2+) is accounted for by the formation of dinuclear Zn(2+) complex [Zn(2)(C(35)H(25)N(6)O)(OH)(NO(3))(2)(H(2)O)] (2), characterized by X-ray crystallography. The fluorescence quantum yield of the chemosensor 1 is only 0.019, and it increases more than 12-fold (0.237) in the presence of 2 equiv of the zinc ion. Interestingly, the introduction of other metal ions causes the fluorescence intensity to be either unchanged or weakened. By incubation of cultured living cells (A375 and HT-29) with the chemosensor 1, intracellular Zn(2+) concentrations could be monitored through selective fluorescence chemosensing.


Subject(s)
Benzimidazoles/chemical synthesis , Cresols/chemical synthesis , Fluorescent Dyes/chemical synthesis , Quinazolines/chemical synthesis , Spectrometry, Fluorescence/methods , Zinc/chemistry , Buffers , Cations, Divalent , Cell Line, Tumor , Crystallography, X-Ray , HT29 Cells/pathology , HT29 Cells/ultrastructure , Humans , Hydrogen-Ion Concentration , Melanoma/pathology , Melanoma/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...