Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Ecol Evol ; 6(2): 145-154, 2022 02.
Article in English | MEDLINE | ID: mdl-34969991

ABSTRACT

Sampling biases in the fossil record distort estimates of past biodiversity. However, these biases not only reflect the geological and spatial aspects of the fossil record, but also the historical and current collation of fossil data. We demonstrate how the legacy of colonialism and socioeconomic factors, such as wealth, education and political stability, impact the global distribution of fossil data over the past 30 years. We find that a global power imbalance persists in palaeontology, with researchers in high- or upper-middle-income countries holding a monopoly over palaeontological knowledge production by contributing to 97% of fossil data. As a result, some countries or regions tend to be better sampled than others, ultimately leading to heterogeneous spatial sampling across the globe. This illustrates how efforts to mitigate sampling biases to obtain a truly representative view of past biodiversity are not disconnected from the aim of diversifying and decolonizing our discipline.


Subject(s)
Biodiversity , Paleontology , Fossils , Selection Bias
3.
Proc Biol Sci ; 284(1860)2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28768884

ABSTRACT

Body size is a synthetic functional trait determining many key ecosystem properties. Reduction in average body size has been suggested as one of the universal responses to global warming in aquatic ecosystems. Climate change, however, coincides with human-enhanced dispersal of alien species and can facilitate their establishment. We address effects of species introductions on the size structure of recipient communities using data on Red Sea bivalves entering the Mediterranean Sea through the Suez Canal. We show that the invasion leads to increase in median body size of the Mediterranean assemblage. Alien species are significantly larger than native Mediterranean bivalves, even though they represent a random subset of the Red Sea species with respect to body size. The observed patterns result primarily from the differences in the taxonomic composition and body-size distributions of the source and recipient species pools. In contrast to the expectations based on the general temperature-size relationships in marine ectotherms, continued warming of the Mediterranean Sea indirectly leads to an increase in the proportion of large-bodied species in bivalve assemblages by accelerating the entry and spread of tropical aliens. These results underscore complex interactions between changing climate and species invasions in driving functional shifts in marine ecosystems.


Subject(s)
Bivalvia , Body Size , Climate Change , Introduced Species , Animals , Ecosystem , Indian Ocean , Mediterranean Sea
SELECTION OF CITATIONS
SEARCH DETAIL
...