Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 7(1): 485-497, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38165836

ABSTRACT

This study devised a label-free electrochemical immunosensor for the quantitative detection of alpha-fetoprotein (AFP). 3-Polythiophene acetic acid (3-PTAA) nanoparticles were anchored onto a few-layer graphene (FLG) nanosheet, and the resulting nanocomposite was utilized as the immunosensor platform. The AFP antibody (anti-AFP) was immobilized on 3-PTAA@FLG via a covalent interaction between the amine group of anti-AFP and the carboxylic group of 3-PTAA via ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling. FLG is largely responsible for providing electrochemical signals, whereas 3-PTAA nanoparticles are well-known for their ability to be compatible with biological molecules in neutral aqueous solutions. Moreover, the carboxyl group present in 3-PTAA effectively binds anti-AFP through EDC/NHS conjugation. Owing to good dispersibility and higher surface area of 3-PTAA, it is very convenient for casting the polymer directly on the electrode substrate followed by immobilization of anti-AFP. Thus, it is feasible to regulate the activity of AFP proteins and control the spatial distribution of the immobilized anti-AFP proteins. The electrochemical sensing performance was assessed via cyclic voltammetry and electrochemical impedance spectroscopy. For an increase in the bioconjugate concentration, the results demonstrated a surge in charge-transfer resistance and a consequent decline in the current response. This approach effectively detected AFP at an extended dynamic range of 0.0001-250 ng/mL with a detection limit of 0.047 pg/mL. Furthermore, the sensing capacity of the immunosensor for AFP detection has been demonstrated to be steady in real human serum cultures. Our approach exhibits good electrochemical performance in terms of reproducibility, selectivity, and stability, which would surely impart budding applications in the clinical diagnosis of several other tumor markers.


Subject(s)
Biosensing Techniques , Graphite , Liver Neoplasms , Nanocomposites , Nanospheres , Thiophenes , Humans , Graphite/chemistry , alpha-Fetoproteins , Biomarkers, Tumor , Acetic Acid , Biosensing Techniques/methods , Reproducibility of Results , Immunoassay/methods , Polymers , Liver Neoplasms/diagnosis , Nanocomposites/chemistry
2.
Mater Sci Eng C Mater Biol Appl ; 99: 696-709, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30889743

ABSTRACT

A green, efficient synthesis of cadmium oxide decorated reduced graphene oxide nanocomposites (RGO/CdO) was prepared by one-step co-precipitation and hydrothermal method. Crystalline nature of the nanocomposites was characterized by X-ray diffraction analysis. To evaluate the structural morphology and particle size, high resolution transmission electron microscopy were used. X-ray photoelectron spectroscopy, Raman spectroscopy and Fourier transform infrared spectroscopy techniques were employed to establish chemical structure of the nanocomposites and Atomic Force Microscopy was done to measure the thickness. The optical properties were evaluated by UV-visible absorption spectroscopy. Thermo-gravimetric analysis, BET surface area and zeta potential measurements were carried out to study the thermal and surface characteristics. The CdO nano-particles (NPs) decorated on RGO sheets exhibit better electrical conductivity compared to RGO. The antibacterial activity of the nanocomposites has also been monitored in different culture media imparting good potentiality than RGO.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cadmium Compounds/pharmacology , Electricity , Graphite/pharmacology , Green Chemistry Technology/methods , Nanocomposites/chemistry , Oxides/pharmacology , Bacteria/drug effects , Microbial Sensitivity Tests , Nanocomposites/ultrastructure , Photoelectron Spectroscopy , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Static Electricity , Temperature , X-Ray Diffraction
3.
Arch Biochem Biophys ; 635: 27-36, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29029878

ABSTRACT

Dielectric properties of a living biological membrane play crucial role indicating the status of the cell in pathogenic or healthy condition. A distinct variation in membrane capacitance and impedance was observed for peripheral blood mononuclear cell (PBMC) suspensions for diabetic and diabetic-dyslipidemic subjects compared to healthy control. Low frequency region were explicitly considered in electrical analysis to address complex membrane dielectric factors that alter the system capacitance of a PBMC suspension. Such variation was marked in size, morphology and membrane function of PBMCs for control and diseased cases. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies reveal significant alteration in surface morphology of PBMCs in diseased condition. Side scatter of flow cytometry reveals complexity of PBMCs in diseased condition. Changes in size between groups were not found by SEM and forward scatter. Functional alteration in PBMCs was manifested by significant changes in cell membrane properties like Na+, K+ ATPase and Ca2+, Mg2+ ATPase activity, reduced plasma membrane fluidity and changes in intracellular Ca2+ content, which bear significant correlation in diabetic and diabetic dyslipidemic subjects. Therefore, dielectric parameters of PBMCs in diabetic-dyslipidemic challenges may led to interesting correlation opening the possibility of identifying crucial signature biomarkers.


Subject(s)
Cell Membrane/pathology , Diabetes Mellitus/physiopathology , Dyslipidemias/physiopathology , Leukocytes, Mononuclear/pathology , Membrane Fluidity , Cell Membrane/ultrastructure , Cells, Cultured , Diabetes Mellitus/pathology , Dyslipidemias/pathology , Electric Capacitance , Electric Impedance , Humans , Leukocytes, Mononuclear/ultrastructure
4.
Talanta ; 171: 327-334, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28551147

ABSTRACT

This study sought to detect the presence of sucrose as an adulterant in selected honey varieties from different floral origins by employing Electrical Impedance Spectroscopy (EIS) technique which has been simultaneously supported by Fourier Transform-Mid Infrared Spectroscopy (FT-MIR) measurements to provide a rapid, robust yet simple platform for honey quality evaluation. Variation of electrical parameters such as impedance, capacitance and conductance for 10%, 20%, 30%, 40%, 50%, 60% and 70% (w/w) sucrose syrup (SS) adulterated honey samples are analyzed and their respective current-voltage (I-V) characteristics are studied. Capacitance, conductance and net current flowing through the system are observed to decrease linearly whereas system impedance has been found to increase similarly with the increase in adulterant content. Also, FT-MIR measurements in the spectral region between 1800cm-1 and 650cm-1 reveal the increment of absorbance values due to the addition of SS. Full-Width-at-Half-Maximum (FWHM) is estimated from the spectral peak 1056cm-1 for all pure and adulterated honey samples and is observed to be linearly increasing with increase in adulterant content. Finally, the coefficient of sensitivity has been extracted for all varieties of honey considered in terms of the measured conductance values.


Subject(s)
Dielectric Spectroscopy , Flowers/chemistry , Fraud , Honey/analysis , Spectroscopy, Fourier Transform Infrared , Sugars/analysis , Cost-Benefit Analysis , Optical Phenomena
5.
Carbohydr Polym ; 98(1): 80-8, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23987319

ABSTRACT

Nickel nanoparticles synthesized from NiCl2·6H2O by hydrazine hydrate in mixed solvent of ethanol and water in the presence of hydroxypropylmethylcellulose (HPMC) as protective and stabilizing agents. The morphology and sizes of synthesized Ni nanoparticles were studied by field-emission-scanning-electron microscopy (FESEM). Structural properties of nanoparticles were examined by X-ray diffraction (XRD). The polymer stabilized Ni nanoparticles were characterized by Fourier-transform infrared (FTIR) spectroscopy. The magnetic measurement showed that the resultant Ni nanoparticles were ferromagnetic. Also, the saturation magnetization (MS), remanent magnetization (MR) and coercivity (MR) were observed to increase with decreasing temperature. The results of magnetic characterization showed that the magnetic properties of the HPMC stabilized Ni nanoparticles are quite different from those of the bared Ni nanoparticles. All the observed magnetic properties essentially reflected the very typical nanoparticle type nature. Consequently, the resulting Ni nanoparticles were found to be highly active and recyclable catalyst for Suzuki coupling reactions.


Subject(s)
Magnetic Phenomena , Metal Nanoparticles/chemistry , Methylcellulose/analogs & derivatives , Nickel/chemistry , Catalysis , Chemistry Techniques, Synthetic , Hydrazines/chemistry , Hypromellose Derivatives , Methylcellulose/chemistry , Oxidation-Reduction
6.
Nanoscale Res Lett ; 7(1): 99, 2012 Feb 02.
Article in English | MEDLINE | ID: mdl-22297193

ABSTRACT

Electrical and physical properties of a metal-oxide-semiconductor [MOS] structure using atomic layer-deposited high-k dielectrics (TiO2/Al2O3) and epitaxial GaAs [epi-GaAs] grown on Ge(100) substrates have been investigated. The epi-GaAs, either undoped or Zn-doped, was grown using metal-organic chemical vapor deposition method at 620°C to 650°C. The diffusion of Ge atoms into epi-GaAs resulted in auto-doping, and therefore, an n-MOS behavior was observed for undoped and Zn-doped epi-GaAs with the doping concentration up to approximately 1017 cm-3. This is attributed to the diffusion of a significant amount of Ge atoms from the Ge substrate as confirmed by the simulation using SILVACO software and also from the secondary ion mass spectrometry analyses. The Zn-doped epi-GaAs with a doping concentration of approximately 1018 cm-3 converts the epi-GaAs layer into p-type since the Zn doping is relatively higher than the out-diffused Ge concentration. The capacitance-voltage characteristics show similar frequency dispersion and leakage current for n-type and p-type epi-GaAs layers with very low hysteresis voltage (approximately 10 mV).PACS: 81.15.Gh.

SELECTION OF CITATIONS
SEARCH DETAIL
...