Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 26(12): 2063-2072, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37996525

ABSTRACT

The Bayesian brain hypothesis is one of the most influential ideas in neuroscience. However, unstated differences in how Bayesian ideas are operationalized make it difficult to draw general conclusions about how Bayesian computations map onto neural circuits. Here, we identify one such unstated difference: some theories ask how neural circuits could recover information about the world from sensory neural activity (Bayesian decoding), whereas others ask how neural circuits could implement inference in an internal model (Bayesian encoding). These two approaches require profoundly different assumptions and lead to different interpretations of empirical data. We contrast them in terms of motivations, empirical support and relationship to neural data. We also use a simple model to argue that encoding and decoding models are complementary rather than competing. Appreciating the distinction between Bayesian encoding and Bayesian decoding will help to organize future work and enable stronger empirical tests about the nature of inference in the brain.


Subject(s)
Models, Neurological , Neurosciences , Bayes Theorem , Brain
2.
PLoS Comput Biol ; 17(11): e1009517, 2021 11.
Article in English | MEDLINE | ID: mdl-34843452

ABSTRACT

Making good decisions requires updating beliefs according to new evidence. This is a dynamical process that is prone to biases: in some cases, beliefs become entrenched and resistant to new evidence (leading to primacy effects), while in other cases, beliefs fade over time and rely primarily on later evidence (leading to recency effects). How and why either type of bias dominates in a given context is an important open question. Here, we study this question in classic perceptual decision-making tasks, where, puzzlingly, previous empirical studies differ in the kinds of biases they observe, ranging from primacy to recency, despite seemingly equivalent tasks. We present a new model, based on hierarchical approximate inference and derived from normative principles, that not only explains both primacy and recency effects in existing studies, but also predicts how the type of bias should depend on the statistics of stimuli in a given task. We verify this prediction in a novel visual discrimination task with human observers, finding that each observer's temporal bias changed as the result of changing the key stimulus statistics identified by our model. The key dynamic that leads to a primacy bias in our model is an overweighting of new sensory information that agrees with the observer's existing belief-a type of 'confirmation bias'. By fitting an extended drift-diffusion model to our data we rule out an alternative explanation for primacy effects due to bounded integration. Taken together, our results resolve a major discrepancy among existing perceptual decision-making studies, and suggest that a key source of bias in human decision-making is approximate hierarchical inference.


Subject(s)
Bias , Decision Making , Perception , Humans , Models, Psychological
SELECTION OF CITATIONS
SEARCH DETAIL
...