Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; : e202401617, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788130

ABSTRACT

A magnetically isolable iron oxide nanoparticles is introduced as an efficient heterogeneous photocatalyst for non-directed C‒H arylation employing aryl diazonium salts as the aryl precursors. This first-row transition metal-based photocatalyst revealed versatile activities and is applicable to a wide range of substrates, demonstrating brilliant efficacy and superior recyclability. Detailed catalytic characterization describes the physical properties and redox behavior of the Fe-catalyst. Adequate control experiments helped to establish the radical-based mechanism for the C‒H arylation.

2.
J Am Chem Soc ; 145(50): 27390-27396, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38064755

ABSTRACT

Groundwater reservoirs contaminated with perfluoroalkyl and polyfluoroalkyl substances (PFASs) need purifying remedies. Perfluorooctanoic acid (PFOA) is the most abundant PFAS in drinking water. Although different degradation strategies for PFOA have been explored, none of them disintegrates the PFOA backbone rapidly under mild conditions. Herein, we report a molecular copper electrocatalyst that assists in the degradation of PFOA up to 93% with a 99% defluorination rate within 4 h of cathodic controlled-current electrolysis. The current-normalized pseudo-first-order rate constant has been estimated to be quite high for PFOA decomposition (3.32 L h-1 A-1), indicating its fast degradation at room temperature. Furthermore, comparatively, rapid decarboxylation over the first 2 h of electrolysis has been suggested to be the rate-determining step in PFOA degradation. The related Gibbs free energy of activation has been calculated as 22.6 kcal/mol based on the experimental data. In addition, we did not observe the formation of short-alkyl-chain PFASs as byproducts that are typically found in chain-shortening PFAS degradation routes. Instead, free fluoride (F-), trifluoroacetate (CF3COO-), trifluoromethane (CF3H), and tetrafluoromethane (CF4) were detected as fragmented PFOA products along with the evolution of CO2 using gas chromatography (GC), ion chromatography (IC), and gas chromatography-mass spectrometry (GC-MS) techniques, suggesting comprehensive cleavage of C-C bonds in PFOA. Hence, this study presents an effective method for the rapid degradation of PFOA into small ions/molecules.

3.
Chemistry ; 28(52): e202201323, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-35652804

ABSTRACT

Electrocatalytic hydrogen gas production is considered a potential pathway towards carbon-neutral energy sources. However, the development of this technology is hindered by the lack of efficient, cost-effective, and environmentally benign catalysts. In this study, a main-group-element-based electrocatalyst, SbSalen, is reported to catalyze the hydrogen evolution reaction (HER) in an aqueous medium. The heterogenized molecular system achieved a Faradaic efficiency of 100 % at -1.4 V vs. NHE with a maximum current density of -30.7 mA/cm2 . X-ray photoelectron spectroscopy of the catalyst-bound working electrode before and after electrolysis confirmed the molecular stability during catalysis. The turnover frequency was calculated as 43.4 s-1 using redox-peak integration. The kinetic and mechanistic aspects of the electrocatalytic reaction were further examined by computational methods. This study provides mechanistic insights into main-group-element electrocatalysts for heterogeneous small-molecule conversion.

4.
Angew Chem Int Ed Engl ; 61(34): e202206325, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35727682

ABSTRACT

Electrocatalytic proton reduction to form dihydrogen (H2 ) is an effective way to store energy in the form of chemical bonds. In this study, we validate the applicability of a main-group-element-based tin porphyrin complex as an effective molecular electrocatalyst for proton reduction. A PEGylated Sn porphyrin complex (SnPEGP) displayed high activity (-4.6 mA cm-2 at -1.7 V vs. Fc/Fc+ ) and high selectivity (H2 Faradaic efficiency of 94 % at -1.7 V vs. Fc/Fc+ ) in acetonitrile (MeCN) with trifluoroacetic acid (TFA) as the proton source. The maximum turnover frequency (TOFmax ) for H2 production was obtained as 1099 s-1 . Spectroelectrochemical analysis, in conjunction with quantum chemical calculations, suggest that proton reduction occurs via an electron-chemical-electron-chemical (ECEC) pathway. This study reveals that the tin porphyrin catalyst serves as a novel platform for investigating molecular electrocatalytic reactions and provides new mechanistic insights into proton reduction.

5.
Inorg Chem ; 60(6): 3843-3850, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33629857

ABSTRACT

Electrochemical carbon dioxide (CO2) reduction is a sustainable approach for transforming atmospheric CO2 into chemical feedstocks and fuels. To overcome the kinetic barriers of electrocatalytic CO2 reduction, catalysts with high selectivity, activity, and stability are needed. Here, we report an iron porphyrin complex, FePEGP, with a poly(ethylene glycol) unit in the second coordination sphere, as a highly selective and active electrocatalyst for the electrochemical reduction of CO2 to carbon monoxide (CO). Controlled-potential electrolysis using FePEGP showed a Faradaic efficiency of 98% and a current density of -7.8 mA/cm2 at -2.2 V versus Fc/Fc+ in acetonitrile using water as the proton source. The maximum turnover frequency was calculated to be 1.4 × 105 s-1 using foot-of-the-wave analysis. Distinct from most other catalysts, the kinetic isotope effect (KIE) study revealed that the protonation step of the Fe-CO2 adduct is not involved in the rate-limiting step. This model shows that the PEG unit as the secondary coordination sphere enhances the catalytic kinetics and thus is an effective design for electrocatalytic CO2 reduction.

6.
Chemistry ; 27(20): 6240-6246, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33476410

ABSTRACT

In this work, the electrocatalytic reduction of dichloromethane (CH2 Cl2 ) into hydrocarbons involving a main group element-based molecular triazole-porphyrin electrocatalyst H2PorT8 is reported. This catalyst converted CH2 Cl2 in acetonitrile to various hydrocarbons (methane, ethane, and ethylene) with a Faradaic efficiency of 70 % and current density of -13 mA cm-2 at a potential of -2.2 V vs. Fc/Fc+ using water as a proton source. The findings of this study and its mechanistic interpretations demonstrated that H2PorT8 was an efficient and stable catalyst for the hydrodechlorination of CH2 Cl2 and that main group catalysts could be potentially used for exploring new catalytic reaction mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...