Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Skin Res Technol ; 30(7): e13830, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951871

ABSTRACT

BACKGROUND: Consumer products such as electrical shavers exert a combination of dynamic loading in the form of pressure and shear on the skin. This mechanical stimulus can lead to discomfort and skin tissue responses characterised as "Skin Sensitivity". To minimise discomfort following shaving, there is a need to establish specific stimulus-response relationships using advanced tools such as optical coherence tomography (OCT). OBJECTIVE: To explore the spatial and temporal changes in skin morphology and microvascular function following an electrical shaving stimulus. METHODS: Ten healthy male volunteers were recruited. The study included a 60-s electrical shaving stimulus on the forearm, cheek and neck. Skin parameters were recorded at baseline, 20 min post stimulus and 24 h post stimulus. Structural and dynamic skin parameters were estimated using OCT, while transepidermal water loss (TEWL) was recorded to provide reference values for skin barrier function. RESULTS: At baseline, six of the eight parameters revealed statistically significant differences between the forearm and the facial sites, while only surface roughness (Rq) and reflectivity were statistically different (p < 0.05) between the cheek and neck. At 20 min post shaving, there was a significant increase in the TEWL values accompanied by increased blood perfusion, with varying magnitude of change dependent on the anatomical site. Recovery characteristics were observed 24 h post stimulus with most parameters returning to basal values, highlighting the transient influence of the stimulus. CONCLUSIONS: OCT parameters revealed spatial and temporal differences in the skin tissue response to electrical shaving. This approach could inform shaver design and prevent skin sensitivity.


Subject(s)
Skin , Tomography, Optical Coherence , Humans , Male , Tomography, Optical Coherence/methods , Adult , Skin/blood supply , Skin/diagnostic imaging , Forearm/blood supply , Young Adult , Microvessels/diagnostic imaging , Microvessels/physiology , Cheek/blood supply , Cheek/diagnostic imaging , Water Loss, Insensible/physiology , Healthy Volunteers , Skin Physiological Phenomena , Electric Stimulation , Neck/diagnostic imaging , Neck/blood supply , Microcirculation/physiology
2.
Skin Res Technol ; 28(1): 187-199, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34708455

ABSTRACT

BACKGROUND: Skin sensitivity (SS) is a commonly occurring response to a range of stimuli, including environmental conditions (e.g., sun exposure), chemical irritants (e.g., soaps and cosmetics), and mechanical forces (e.g., while shaving). From both industry and academia, many efforts have been taken to quantify the characteristics of SS in a standardised manner, but the study is hindered by the lack of an objective definition. METHODS: A review of the scientific literature regarding different parameters attributed to the loss of skin integrity and linked with exhibition of SS was conducted. Articles included were screened for mechanical stimulation of the skin, with objective quantification of tissue responses using biophysical or imaging techniques. Additionally, studies where cohorts of SS and non-SS individuals were reported have been critiqued. RESULTS: The findings identified that the structure and function of the stratum corneum and its effective barrier properties are closely associated with SS. Thus, an array of skin tissue responses has been selected for characterization of SS due to mechanical stimuli, including: transepidermal water loss, hydration, redness, temperature, and sebum index. Additionally, certain imaging tools allow quantification of the superficial skin layers, providing structural characteristics underlying SS. CONCLUSION: This review proposes a multimodal approach for identification of SS, providing a means to characterise skin tissue responses objectively. Optical coherence tomography (OCT) has been suggested as a suitable tool for dermatological research with clinical applications. Such an approach would enhance the knowledge underlying the multifactorial nature of SS and aid the development of personalised solutions in medical and consumer devices.


Subject(s)
Skin Physiological Phenomena , Skin , Epidermis , Erythema , Humans , Sebum
SELECTION OF CITATIONS
SEARCH DETAIL
...