Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 97(8): 4832-7, 2014.
Article in English | MEDLINE | ID: mdl-24856983

ABSTRACT

In the current paper, a method is introduced to determine lactoferrin in sweet whey using reversed-phase HPLC without any pretreatment of the samples or use of a separation technique. As a starting point, the most common HPLC protocols for acid whey, which included pretreatment of the whey along with a sodium dodecyl sulfate-PAGE step, were tested. By skipping the pretreatment and the separation steps while altering the gradient profile, different chromatographs were obtained that proved to be equally efficient to determine lactoferrin. For this novel 1-step reversed-phase HPLC method, repeatability was very high over a wide range of concentrations (1.88% intraday to 5.89% interday). The limit of detection was 35.46µg/mL [signal:noise ratio (S/N)=3], whereas the limit of quantification was 50.86µg/mL (S/N=10). Omitting the pretreatment step caused a degradation of the column's lifetime (to approximately 2,000 samples). As a result, the lactoferrin elution time changed, but neither the accuracy nor the separation ability of the method was significantly influenced. We observed that this degradation could be easily avoided or detained by centrifuging the samples to remove fat or by extensive cleaning of the column after every 5 samples.


Subject(s)
Cheese/analysis , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Food Analysis/methods , Lactoferrin/analysis , Electrophoresis, Polyacrylamide Gel
2.
Anal Chim Acta ; 573-574: 459-65, 2006 Jul 28.
Article in English | MEDLINE | ID: mdl-17723561

ABSTRACT

Recent developments in Fourier transform infrared (FT-IR) spectroscopy instrumentation extend the application of this technique to the field of food research, facilitating particularly the studies on edible oils and fats. In this work, FT-IR spectroscopy is used as an effective analytical tool in order: (a) to determine extra virgin olive oil adulteration with lower priced vegetable oils (sunflower oil, soyabean oil, sesame oil, corn oil) and (b) to monitor the oxidation process of corn oil samples undergone during heating or/and exposure to ultraviolet radiation. A band shift observed at 3009 cm(-1) assigned to the C_H stretching vibration of the cis-double bond, allows the determination of extra virgin olive oil adulteration. Changes in the 3050-2800 and 1745 cm(-1) spectral region appear after heating at elevated temperatures and aid the oxidation process monitoring. In addition, an analytical technique for the measurement of carbonylic compounds in oils, produced after heating, is applied. The possible antioxidant effect of oregano is also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...