Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 341: 125782, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34419880

ABSTRACT

The carotenoid, α-carotene, is very beneficial for human health and wellness, but microbial production of this compound is notoriously difficult, due to the asymmetric rings on either end of its terpenoid backbone. Here, we report for the first time the efficient production of α-carotene in the industrial bacterium Corynebaterium glutamicum by using a combined pathway engineering approach including evaluation of the performance of different cyclases and analysis of key metabolic intermediates to determine flux bottlenecks in the carotenoid biosynthesis pathway. A multi-copy chromosomal integration method was pivotal in achieving stable expression of the cyclases. In fed-batch fermentation, 1,054 mg/L of α-carotene was produced by the best strain, which is the highest reported titer achieved in microbial fermentation. The success of increased α-carotene production suggests that the multi-copy chromosomal integration method can be a useful metabolic engineering tool for overexpression of key enzymes in C. glutamicum and other bacterium as well.


Subject(s)
Corynebacterium glutamicum , Carotenoids/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Fermentation , Humans , Metabolic Engineering
2.
Biotechnol Bioeng ; 116(12): 3269-3281, 2019 12.
Article in English | MEDLINE | ID: mdl-31429926

ABSTRACT

Cell-free systems are growing in importance for the biosynthesis of complex molecules. These systems combine the precision of traditional chemistry with the versatility of biology in creating superior overall processes. Recently, a new synthetic pathway for the biosynthesis of isoprenoids using the substrate isopentenol, dubbed the isopentenol utilization pathway (IUP), was demonstrated to be a promising alternative to the native 2C-methyl-d-erythritol-4-phosphate (MEP) and mevalonate (MVA) pathways. This simplified pathway, which contains a minimum of four enzymes to produce basic monoterpenes and only depends on ATP and isopentenol as substrates, allows for a highly flexible approach to the commercial synthesis of isoprenoid products. In this work, we use metabolic reconstitution to characterize this new pathway in vitro and demonstrate its use for the cell-free synthesis of mono-, sesquit-, and diterpenoids. Kinetic modeling and sensitivity analysis were also used to identify the most significant parameters for taxadiene productivity, and metabolic control analysis was employed to elucidate protein-level interactions within this pathway, which demonstrated that the IUP enzymatic system is primarily controlled by the concentration and kinetics of choline kinase (CK) and not regulated by any pathway intermediates. This is a significant advantage over the natural MEP or MVA pathways as it greatly simplifies future metabolic engineering efforts, both in vitro and in vivo, aiming at improving the kinetics of CK. Finally, we used the insights gathered to demonstrate an in vitro IUP system that can produce 220 mg/L of the diterpene taxadiene, in 9 hr, almost 3-fold faster than any system reported thus far.


Subject(s)
Models, Chemical , Pentanols/chemistry , Terpenes/chemical synthesis , Cell-Free System/chemistry , Kinetics
3.
Proc Natl Acad Sci U S A ; 116(2): 506-511, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30584096

ABSTRACT

Isoprenoids comprise a large class of chemicals of significant interest due to their diverse properties. Biological production of isoprenoids is considered to be the most efficient way for their large-scale production. Isoprenoid biosynthesis has thus far been dependent on pathways inextricably linked to glucose metabolism. These pathways suffer from inherent limitations due to their length, complex regulation, and extensive cofactor requirements. Here, we present a synthetic isoprenoid pathway that aims to overcome these limitations. This isopentenol utilization pathway (IUP) can produce isopentenyl diphosphate or dimethylallyl diphosphate, the main precursors to isoprenoid synthesis, through sequential phosphorylation of isopentenol isomers isoprenol or prenol. After identifying suitable enzymes and constructing the pathway, we attempted to probe the limits of the IUP for producing various isoprenoid downstream products. The IUP flux exceeded the capacity of almost all downstream pathways tested and was competitive with the highest isoprenoid fluxes reported.


Subject(s)
Escherichia coli K12/metabolism , Terpenes/metabolism , Escherichia coli K12/genetics , Glucose/genetics , Glucose/metabolism
4.
Bioorg Med Chem Lett ; 24(23): 5497-501, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25455492

ABSTRACT

In this study, a total of 22 flavonoids were tested for their HDAC inhibitory activity using fluorimetric and BRET-based assays. Four aurones were found to be active in both assays and showed IC50 values below 20 µM in the enzymatic assay. Molecular modelling revealed that the presence of hydroxyl groups was responsible for good compound orientation within the isoenzyme catalytic site and zinc chelation.


Subject(s)
Benzofurans/chemistry , Histone Deacetylase Inhibitors/chemistry , Drug Design , Humans , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...