Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(18): e2208227, 2023 05.
Article in English | MEDLINE | ID: mdl-36732906

ABSTRACT

Peritumoral brain invasion is the main target to cure glioblastoma. Chemoradiotherapy and targeted therapies fail to combat peritumoral relapse. Brain inaccessibility and tumor heterogeneity explain this failure, combined with overlooking the peritumor microenvironment. Reduce graphene oxide (rGO) provides a unique opportunity to modulate the local brain microenvironment. Multimodal graphene impacts are reported on glioblastoma cells in vitro but fail when translated in vivo because of low diffusion. This issue is solved by developing a new rGO formulation involving ultramixing during the functionalization with polyethyleneimine (PEI) leading to the formation of highly water-stable rGO-PEI. Wide mice brain diffusion and biocompatibility are demonstrated. Using an invasive GL261 model, an anti-invasive effect is observed. A major unexpected modification of the peritumoral area is also observed with the neutralization of gliosis. In vitro, mechanistic investigations are performed using primary astrocytes and cytokine array. The result suggests that direct contact of rGO-PEIUT neutralizes astrogliosis, decreasing several proinflammatory cytokines that would explain a bystander tumor anti-invasive effect. rGO also significantly downregulates several proinvasive/protumoral cytokines at the tumor cell level. The results open the way to a new microenvironment anti-invasive nanotherapy using a new graphene nanomaterial that is optimized for in vivo brain delivery.


Subject(s)
Glioblastoma , Graphite , Animals , Mice , Glioblastoma/therapy , Cytokines , Brain , Tumor Microenvironment
2.
Nanoscale ; 14(26): 9313-9322, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35579037

ABSTRACT

Covalent modification of the surface of carbon nanotube fibres (CNTFs) through electrochemical reduction of para-substituted phenyldiazonium salts and electrochemical oxidation of an aliphatic diamine is described. Following these strategies, diverse surface functionalities have been introduced while preserving the fibre bulk properties. The corresponding modified CNTFs were fully characterised by Raman spectroscopy, X-ray photoelectron spectroscopy, energy dispersive X-Ray, scanning electron microscopy and electrochemical impedance spectroscopy, exhibiting different surface properties from those of the unmodified CNTFs.

3.
Nanoscale ; 10(13): 5965-5974, 2018 Mar 29.
Article in English | MEDLINE | ID: mdl-29542775

ABSTRACT

Several studies have demonstrated the ability of graphene oxide (GO) to efficiently adsorb small-interfering RNA (siRNA) on its surface and to transport it into cells. However, studies on whether and how siRNA interacts with GO are still inconclusive. In this context, understanding the interaction between GO and siRNA is fundamental to design new efficient gene silencing tools. In this work, the interactions between GO and siRNA molecules were systematically investigated. We focused on how the GO size, oxygenated groups present on the surface and chemical functionalization affect the double helix siRNA structure, using gel electrophoresis, UV-Vis spectroscopy, fluorescence resonance energy transfer (FRET) and circular dichroism (CD). We found that the siRNA secondary structure was clearly altered by the interaction with GO flakes. In addition, we were able to correlate the double strand damage with the size and the oxygenated groups present on the GO sheets. Finally, we demonstrated that GO functionalized with low molecular weight polyethyleneimine (PEI, 800 Da) is able to protect siRNA from structural modifications. We believed that this research effort will improve our understanding of the behavior of GO/siRNA complexes, and thus facilitate the design of appropriate bio/nanointerfaces and new efficient gene silencing systems.


Subject(s)
Graphite/chemistry , RNA, Small Interfering/chemistry , Gene Silencing , Oxides , Particle Size , Polyethyleneimine
4.
Macromol Rapid Commun ; 37(6): 539-44, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26787365

ABSTRACT

Cobalt-mediated radical polymerization (CMRP) of vinyl acetate (VAc) is successfully achieved in supercritical carbon dioxide (scCO2). CMRP of VAc is conducted using an alkyl-cobalt(III) adduct that is soluble in scCO2. Kinetics studies coupled to visual observations of the polymerization medium highlight that the melt viscosity and PVAc molar mass (Mn) are key parameters that affect the CMRP in scCO2. It is noticed that CMRP is controlled for Mn up to 10 000 g mol(-1), but loss of control is progressively observed for higher molar masses when PVAc precipitates in the polymerization medium. Low molar mass PVAc macroinitiator, prepared by CMRP in scCO2, is then successfully used to initiate the acrylonitrile polymerization. PVAc-b-PAN block copolymer is collected as a free flowing powder at the end of the process although the dispersity of the copolymer increases with the reaction time. Although optimization is required to decrease the dispersity of the polymer formed, this CMRP process opens new perspectives for macromolecular engineering in scCO2 without the utilization of fluorinated comonomers or organic solvents.


Subject(s)
Acrylonitrile/chemistry , Carbon Dioxide/chemistry , Cobalt/chemistry , Vinyl Compounds/chemistry , Catalysis , Kinetics , Molecular Weight , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...