Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 86(5): 1222-1229, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37099442

ABSTRACT

Cyclotides are a unique family of stable and cyclic mini-proteins found in plants that have nematicidal and anthelmintic activities. They are distributed across the Rubiaceae, Violaceae, Fabaceae, Cucurbitaceae, and Solanaceae plant families, where they are posited to act as protective agents against pests. In this study, we tested the nematicidal properties of extracts from four major cyclotide-producing plants, Oldenlandia affinis, Clitoria ternatea, Viola odorata, and Hybanthus enneaspermus, against the free-living model nematode Caenorhabditis elegans. We evaluated the nematicidal activity of the cyclotides kalata B1, cycloviolacin O2, and hyen D present in these extracts and found them to be active against the larvae of C. elegans. Both the plant extracts and isolated cyclotides exerted dose-dependent toxicity on the first-stage larvae of C. elegans. Isolated cyclotides caused death or damage upon interacting with the worms' mouth, pharynx, and midgut or membrane. Cycloviolacin O2 and hyen D produced bubble-like structures around the C. elegans membrane, termed blebs, implicating membrane disruption causing toxicity and death. All tested cyclotides lost their toxicity when the hydrophobic patches present on them were disrupted via a single-point mutation. The present results provide a facile assay design to measure and explore the nematicidal activities of plant extracts and purified cyclotides on C. elegans.


Subject(s)
Cyclotides , Fabaceae , Nematoda , Violaceae , Animals , Antinematodal Agents/pharmacology , Caenorhabditis elegans , Cyclotides/pharmacology , Cyclotides/chemistry , Fabaceae/chemistry , Plant Extracts/chemistry , Plant Proteins/chemistry
2.
Dev Biol ; 423(1): 46-56, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28118982

ABSTRACT

The group C SOX transcription factors SOX4, -11 and -12 play important and mutually overlapping roles in development of a number of organs. Here, we examined the role of SoxC genes during gonadal development in mice. All three genes were expressed in developing gonads of both sexes, predominantly in somatic cells, with Sox4 being most strongly expressed. Sox4 deficiency resulted in elongation of both ovaries and testes, and an increased number of testis cords. While female germ cells entered meiosis normally, male germ cells showed reduced levels of differentiation markers Nanos2 and Dnmt3l and increased levels of pluripotency genes Cripto and Nanog, suggesting that SOX4 may normally act to restrict the pluripotency period of male germ cells and ensure their proper differentiation. Finally, our data reveal that SOX4 (and, to a lesser extent, SOX11 and -12) repressed transcription of the sex-determining gene Sox9 via an upstream testis-specific enhancer core (TESCO) element in fetal gonads, raising the possibility that SOXC proteins may function as transcriptional repressors in a context-dependent manner.


Subject(s)
Cell Differentiation , Germ Cells/cytology , Germ Cells/metabolism , Morphogenesis , SOXC Transcription Factors/metabolism , Testis/growth & development , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Female , Fetus/cytology , Gene Expression Regulation, Developmental , Male , Mice , SOXC Transcription Factors/genetics , Sex-Determining Region Y Protein/metabolism , Spermatogenesis , Testis/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...