Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
J Control Release ; 365: 617-639, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043727

ABSTRACT

Among non-communicable diseases, cardiovascular diseases are the most prevalent, accounting for approximately 17 million deaths per year. Despite conventional treatment, cardiac tissue engineering emerges as a potential alternative for the advancement and treatment of these patients, using biomaterials to replace or repair cardiac tissues. Among these materials, gelatin in its methacrylated form (GelMA) is a biodegradable and biocompatible polymer with adjustable biophysical properties. Furthermore, gelatin has the ability to replace and perform collagen-like functions for cell development in vitro. The interest in using GelMA hydrogels combined with nanomaterials is increasingly growing to promote the responsiveness to external stimuli and improve certain properties of these hydrogels by exploring the incorporation of nanomaterials into these hydrogels to serve as electrical signaling conductive elements. This review highlights the applications of electrically conductive nanomaterials associated with GelMA hydrogels for the development of structures for cardiac tissue engineering, by focusing on studies that report the combination of GelMA with nanomaterials, such as gold and carbon derivatives (carbon nanotubes and graphene), in addition to the possibility of applying these materials in 3D tissue engineering, developing new possibilities for cardiac studies.


Subject(s)
Gelatin , Nanotubes, Carbon , Humans , Gelatin/chemistry , Tissue Scaffolds/chemistry , Nanotubes, Carbon/chemistry , Hydrogels/chemistry , Biocompatible Materials/chemistry , Tissue Engineering
2.
Drug Deliv Transl Res ; 14(1): 62-79, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37566362

ABSTRACT

The aim of this work was to develop a dense lamellar scaffold, as a biomimetic material with potential applications in the regeneration of tracheal tissue after surgical tumor resection. The scaffolds were produced by plastic compression technique, exploiting the use of total phenolic compounds (TPC) from Psidium guajava Linn as a potential cross-linking agent in a polymeric mixture based on collagen (COL), silk fibroin (SF), and polyethylene glycol 400 (PEG 400). Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) confirmed the chemical interactions between the polymers and the cross-linking of TPC between COL and SF. Morphological analyses showed scaffolds with porosity, interconnectivity, and a porous surface structure with a gyroid-like geometry. The analysis of the anisotropic degree resulted in anisotropic structures (0.1% TFC and 0.3% TFC) and an isotropic structure (0.5% TFC). In the mechanical properties, it was evidenced greater resistance for the 0.3% TFC formulation. The addition of TPC percentages did not result in a significant difference (p > 0.05) in swelling capacity and disintegration rate. The results confirmed that TPC were able to modulate the morphological, morphometric, and mechanical properties of scaffolds. Thus, this study describes a potential new material to improve the regeneration of major tracheal structures after surgical tumor removal.


Subject(s)
Fibroins , Neoplasms , Psidium , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Fibroins/chemistry , Collagen/chemistry , Porosity , Spectroscopy, Fourier Transform Infrared
3.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36297398

ABSTRACT

Wound healing is known to be a complicated and intricate process and commonly classified as chronic or acute. Patients with chronic wounds are of public health concern, and require more attention onto skin lesions, including atopic dermatitis. Despite being a natural process, healing can be impaired by existing chronic de diseases such as diabetes, for example. Recently, wound dressings based in nanotechnology systems have emerged as a viable option to improve the healing process. Current advances in nanotechnology-based systems to release growth factors and bioactive agents represent a great opportunity to develop new therapies for wound treatments. It is essential that healthcare professionals understand the key processes involved in the healing cascade, to maximize care with these patients and minimize the undesirable outcomes of non-healing wounds. Therefore, this review aims to summarize the healing process phases and provide a general overview of dressings based in nanotechnology using biomaterials for the release of active agents in wound site.

4.
Heliyon ; 8(2): e08938, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35198788

ABSTRACT

The skin is a complex and multifunctional organ, in which the static versus dynamic balance is responsible for its constant adaptation to variations in the external environment that is continuously exposed. One of the most important functions of the skin is its ability to act as a protective barrier, against the entry of foreign substances and against the excessive loss of endogenous material. Human skin imposes physical, chemical and biological limitations on all types of permeating agents that can cross the epithelial barrier. For a molecule to be passively permeated through the skin, it must have properties, such as dimensions, molecular weight, pKa and hydrophilic-lipophilic gradient, appropriate to the anatomy and physiology of the skin. These requirements have limited the number of commercially available products for dermal and transdermal administration of drugs. To understand the mechanisms involved in the drug permeation process through the skin, the approach should be multidisciplinary in order to overcome biological and pharmacotechnical barriers. The study of the mechanisms involved in the permeation process, and the ways to control it, can make this route of drug administration cease to be a constant promise and become a reality. In this work, we address the physicochemical and biopharmaceutical aspects encountered in the pathway of drugs through the skin, and the potential added value of using solid lipid nanoparticles (SLN) and nanostructured lipid vectors (NLC) to drug permeation/penetration through this route. The technology and architecture for obtaining lipid nanoparticles are described in detail, namely the composition, production methods and the ability to release pharmacologically active substances, as well as the application of these systems in the vectorization of various pharmacologically active substances for dermal and transdermal applications. The characteristics of these systems in terms of dermal application are addressed, such as biocompatibility, occlusion, hydration, emollience and the penetration of pharmacologically active substances. The advantages of using these systems over conventional formulations are described and explored from a pharmaceutical point of view.

5.
Toxics ; 9(8)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34437491

ABSTRACT

Multi-Walled Carbon Nanotubes (MWCNT) have been functionalized with rutin through three steps (i. reaction step; ii. purification step; iii. drying step) and their physicochemical properties investigated with respect to morphological structure, thermal analysis, Fourier Transform Infrared Spectroscopy (FTIR), and cytotoxicity. The molecular docking suggested the rutin-functionalized MWCNT occurred by hydrogen bonds, which was confirmed by FTIR assays, corroborating the results obtained by thermal analyses. A tubular shape, arranged in a three-dimensional structure, could be observed. Mild cytotoxicity observed in 3T3 fibroblasts suggested a dose-effect relationship after exposure. These findings suggest the formation of aggregates of filamentous structures on the cells favoring the cell penetration.

6.
Int J Pharm ; 604: 120534, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33781887

ABSTRACT

Curcumin (CUR) is a phenolic compound present in some herbs, including Curcuma longa Linn. (turmeric rhizome), with a high bioactive capacity and characteristic yellow color. It is mainly used as a spice, although it has been found that CUR has interesting pharmaceutical properties, acting as a natural antioxidant, anti-inflammatory, antimicrobial, and antitumoral agent. Nonetheless, CUR is a hydrophobic compound with low water solubility, poor chemical stability, and fast metabolism, limiting its use as a pharmacological compound. Smart drug delivery systems (DDS) have been used to overcome its low bioavailability and improve its stability. The current work overviews the literature from the past 10 years on the encapsulation of CUR in nanostructured systems, such as micelles, liposomes, niosomes, nanoemulsions, hydrogels, and nanocomplexes, emphasizing its use and ability in cancer therapy. The studies highlighted in this review have shown that these nanoformulations achieved higher solubility, improved tumor cytotoxicity, prolonged CUR release, and reduced side effects, among other interesting advantages.


Subject(s)
Curcumin , Nanostructures , Neoplasms , Biological Availability , Humans , Micelles , Neoplasms/drug therapy
7.
Biology (Basel) ; 9(10)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066555

ABSTRACT

As an immune-privileged target organ, the eyes have important superficial and internal barriers, protecting them from physical and chemical damage from exogenous and/or endogenous origins that would cause injury to visual acuity or even vision loss. These anatomic, physiological and histologic barriers are thus a challenge for drug access and entry into the eye. Novel therapeutic concepts are highly desirable for eye treatment. The design of an efficient ocular drug delivery system still remains a challenge. Although nanotechnology may offer the ability to detect and treat eye diseases, successful treatment approaches are still in demand. The growing interest in nanopharmaceuticals offers the opportunity to improve ophthalmic treatments. Besides their size, which needs to be critically monitored, nanopharmaceuticals for ophthalmic applications have to be produced under sterilized conditions. In this work, we have revised the different sterilization and depyrogenation methods for ophthalmic nanopharmaceuticals with their merits and drawbacks. The paper also describes clinical sterilization of drugs and the outcomes of inappropriate practices, while recent applications of nanopharmaceuticals for ocular drug delivery are also addressed.

8.
Molecules ; 25(18)2020 Sep 12.
Article in English | MEDLINE | ID: mdl-32932660

ABSTRACT

Isopentyl caffeate (ICaf) is a bioactive ester widely distributed in nature. Our patented work has shown promising results of this molecule against Leishmania. However, ICaf shows poor solubility, which limits its usage in clinical settings. In this work, we have proposed the development of an inclusion complex of ICaf in ß-cyclodextrin (ß-CD), with the aim to improve the drug solubility, and thus, its bioavailability. The inclusion complex (ICaf:ß-CD) was developed applying three distinct methods, i.e., physical mixture (PM), kneading (KN) or co-evaporation (CO) in different molar proportions (0.25:1, 1:1 and 2:1). Characterization of the complexes was carried out by thermal analysis, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and molecular docking. The ICaf:ß-CD complex in a molar ratio of 1:1 obtained by CO showed the best complexation and, therefore, was selected for further analysis. Solubility assay showed a marked improvement in the ICaf:ß-CD (CO, 1:1) solubility profile when compared to the pure ICaf compound. Cell proliferation assay using ICaf:ß-CD complex showed an IC50 of 3.8 and 2.7 µg/mL against L. amazonesis and L. chagasi promastigotes, respectively. These results demonstrate the great potential of the inclusion complex to improve the treatment options for visceral and cutaneous leishmaniases.


Subject(s)
Antiprotozoal Agents/pharmacology , Caffeic Acids/pharmacology , Leishmania/drug effects , beta-Cyclodextrins/pharmacology , Antiprotozoal Agents/chemical synthesis , Caffeic Acids/chemistry , Calorimetry, Differential Scanning , Drug Compounding , Inhibitory Concentration 50 , Microscopy, Electron, Scanning , Molecular Docking Simulation , Pharmaceutical Preparations/chemical synthesis , Solubility , Spectroscopy, Fourier Transform Infrared , beta-Cyclodextrins/chemistry
9.
Int J Mol Sci ; 21(17)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32825177

ABSTRACT

Cachexia, a severe multifactorial condition that is underestimated and unrecognized in patients, is characterized by continuous muscle mass loss that leads to progressive functional impairment, while nutritional support cannot completely reverse this clinical condition. There is a strong need for more effective and targeted therapies for cachexia patients. There is a need for drugs that act on cachexia as a distinct and treatable condition to prevent or reverse excess catabolism and inflammation. Due to ghrelin properties, it has been studied in the cachexia and other treatments in a growing number of works. However, in the body, exogenous ghrelin is subject to very rapid degradation. In this context, the intranasal release of ghrelin-loaded liposomes to cross the blood-brain barrier and the release of the drug into the central nervous system may be a promising alternative to improve its bioavailability. The administration of nose-to-brain liposomes for the management of cachexia was addressed only in a limited number of published works. This review focuses on the discussion of the pathophysiology of cachexia, synthesis and physiological effects of ghrelin and the potential treatment of the diseased using ghrelin-loaded liposomes through the nose-to-brain route.


Subject(s)
Blood-Brain Barrier/metabolism , Cachexia/drug therapy , Ghrelin/therapeutic use , Liposomes/metabolism , Administration, Intranasal , Animals , Cachexia/etiology , Ghrelin/administration & dosage , Ghrelin/metabolism , Humans
10.
Medicina (Kaunas) ; 56(7)2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32635279

ABSTRACT

This review discusses the impact of curcumin-an aromatic phytoextract from the turmeric (Curcuma longa) rhizome-as an effective therapeutic agent. Despite all of the beneficial health properties ensured by curcumin application, its pharmacological efficacy is compromised in vivo due to poor aqueous solubility, high metabolism, and rapid excretion that may result in poor systemic bioavailability. To overcome these problems, novel nanosystems have been proposed to enhance its bioavailability and bioactivity by reducing the particle size, the modification of surfaces, and the encapsulation efficiency of curcumin with different nanocarriers. The solutions based on nanotechnology can improve the perspective for medical patients with serious illnesses. In this review, we discuss commonly used curcumin-loaded bio-based nanoparticles that should be implemented for overcoming the innate constraints of this natural ingredient. Furthermore, the associated challenges regarding the potential applications in combination therapies are discussed as well.


Subject(s)
Curcumin/administration & dosage , Curcumin/pharmacology , Nanoparticles/therapeutic use , Biological Availability , Curcumin/therapeutic use , Humans , Nanoparticles/administration & dosage , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Solubility
11.
Article in English | MEDLINE | ID: mdl-32605255

ABSTRACT

This review offers a systematic discussion about nanotoxicology and nanosafety associated with nanomaterials during manufacture and further biomedical applications. A detailed introduction on nanomaterials and their most frequently uses, followed by the critical risk aspects related to regulatory uses and commercialization, is provided. Moreover, the impact of nanotoxicology in research over the last decades is discussed, together with the currently available toxicological methods in cell cultures (in vitro) and in living organisms (in vivo). A special focus is given to inorganic nanoparticles such as titanium dioxide nanoparticles (TiO2NPs) and silver nanoparticles (AgNPs). In vitro and in vivo case studies for the selected nanoparticles are discussed. The final part of this work describes the significance of nano-security for both risk assessment and environmental nanosafety. "Safety-by-Design" is defined as a starting point consisting on the implementation of the principles of drug discovery and development. The concept "Safety-by-Design" appears to be a way to "ensure safety", but the superficiality and the lack of articulation with which it is treated still raises many doubts. Although the approach of "Safety-by-Design" to the principles of drug development has helped in the assessment of the toxicity of nanomaterials, a combination of scientific efforts is constantly urgent to ensure the consistency of methods and processes. This will ensure that the quality of nanomaterials is controlled and their safe development is promoted. Safety issues are considered strategies for discovering novel toxicological-related mechanisms still needed to be promoted.


Subject(s)
Metal Nanoparticles , Nanostructures , Drug Approval , Metal Nanoparticles/toxicity , Nanostructures/toxicity , Risk Assessment , Silver/toxicity , Toxicology/methods
12.
Pharmaceutics ; 12(7)2020 Jul 11.
Article in English | MEDLINE | ID: mdl-32664574

ABSTRACT

The formation of mucosal ulcers is an end result of epithelial damage, and it occurs due to some specific causes, such as trauma, aphthous stomatitis, lichen planus and lichenoid reactions, cytotoxic effects of chemotherapy and radiation, and drug-induced hypersensitivity reactions and malignant settings. This study focused on films for target drug delivery with respect to the treatment of the diseases of the oral mucosa, specifically mucositis. The results of a single clinical study as a pre-experimental design was performed and followed up to the outcome until 30 days. The polymeric film was prepared in a mucoadhesive bilayer structure: the basal layer with lidocaine HCl had a faster release than the apical layer with benzydamine HCl and N-acetyl-cysteine. Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and SEM characterized the physical-chemical and morphological properties. The cell viability and cytotoxicity were evaluated in cell line MCF7. The transport mechanism of the solvent (swelling) and the drugs in the basal or apical layer (drug release) was explained with mathematical models. To evaluate the effect of movement inside the mouth, the folding endurance was determined. The mucoadhesive bilayer film is biologically safe and stimulates cellular proliferation. A single study in vivo demonstrated the therapeutic effect of the mucoadhesive bilayer film in buccal mucositis.

13.
Ars pharm ; 60(4): 205-211, oct.-dic. 2019. tab
Article in English | IBECS | ID: ibc-188483

ABSTRACT

Objectives: The physicochemical characteristics of bran of cassava starch flour and bran of cassava flour (viz. organoleptic characteristics, pH value, moisture content, total ashes, lipid, protein, starch and fiber contents) and biopharmacotechnical parameters (viz. granulometry, flow capacity, angle at rest, outflow time and apparent density) were evaluated aiming at assessing their potential use as tablet excipients. Methodos: Three tablet formulations of venlafaxine hydrochloride were proposed, having as excipients bran of cassava flour, bran of cassava starch flour and Starch 1500(R). The tablets were produced using two different pressures (98 ± 5 MPa and 32 ± 6 Mpa) and their mechanical (hardness and friability) and dissol-ubility characteristics were evaluated. Results and Conclusions: The tablets produced with both cassava flours, using higher pressures, presented similar physicochemical characteristics to those obtained with the excipient Starch1500(R), thus indicating that cassava flours possess the potential to be used as disintegrating agents in tablets


Objetivos: Se evaluaron características físico-químicas del salvado de harina y del salvado de la fécula de mandioca (características organolépticas, pH, humedad, cenizas totales y contenido de lípidos, proteínas, almidones y fibras) y biofarmacotécnicas (granulometría, capacidad de flujo, ángulo en reposo, tiempo de salida y densidad aparente) con el objetivo de evaluar el uso de estos residuos como excipientes para comprimidos. Métodos: Se propusieron tres formulaciones en comprimidos de venlafaxina teniendo como excipientes salvado de harina de mandioca, salvado de fécula de mandioca y Starch 1500 (R). Las pastillas se produjeron utilizando dos presiones diferentes (98 ± 5 MPa y 32 ± 6 Mpa). Las características mecánicas (dureza y friabilidad) y de disolución de los comprimidos se evaluaron. Resultados y Conclusiones: Los comprimidos producidos con ambos salvados de mandioca, utilizando las presiones más elevadas, presentaron características físico-químicas similares a las obtenidas con el excipiente Starch1500(R), indicando que las harinas de mandioca poseen potencial para ser utilizadas como agentes desintegrantes en comprimidos


Subject(s)
Pharmaceutic Aids , Tablets/pharmacology , Manihot/chemistry , Tablets/standards , Chemistry, Physical/methods , Absorption, Physicochemical/drug effects
14.
ACS Omega ; 4(19): 18317-18326, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31720533

ABSTRACT

The search for new therapies and drugs that act as topical agents to relieve pain and control the inflammatory processes in burns always attracted interest in clinical trials. As an alternative to synthetic drugs, natural extracts are useful in the development of new strategies and formulations for improving the quality of life. The aim of this study was to develop a wound dressing using poly(l-co-d,l-lactic acid-co-trimethylene carbonate) (PLDLA-TMC) containing Schinus terebinthifolius Raddi (S.T.R.). S.T.R. is a native Brazilian plant known for its strong anti-inflammatory responses. The membrane of PLDLA-TMC + S. terebinthifolius Raddi was prepared at different concentrations of S.T.R. (5, 10, 15, and 50%). The Fourier transform infrared results showed no change in the PLDLA-TMC spectrum after S.T.R. addition, whereas the swelling test showed changes only in PLDLA-TMC + S.T.R. at 50%. The wettability measurements showed a mass loss due to the decrease in the contact angle in all samples after the S.T.R. addition in the polymer, whereas the S.T.R. release test showed a linear delivery pattern. The scanning electron microscopy analysis showed that S.T.R. was homogeneously distributed at only 5 and 10%. Tensile tests demonstrated an increase in Young's modulus and a reduction in the elongation till rupture of PLDLA-TMC after the addition of S.T.R. The biocompatibility in vitro evaluation with rat fibroblast cells seeded in the membranes of PLDLA-TMC + S.T.R. showed that although S.T.R. interfered in cell morphology, all concentrations tested showed that cells were able to adhere and proliferate during 7 days. Thus, S.T.R. at 50% was chosen to be tested for in vivo trials. The histological and immunohistochemistry results revealed an accelerated skin healing at 7 days after controlled secondary burns were introduced in the dorsal skin, with a striking total recovery of the epidermis and high rates of molecular activation of cell proliferation. Due to the known biocompatibility properties of PLDLA-TMC and its stable release of S.T.R., we strongly recommend S.T.R.-containing PLDLA-TMC as a curative device to favor skin healing.

15.
Molecules ; 24(21)2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31661906

ABSTRACT

Solid lipid nanoparticles (SLNs) can be produced by various methods, but most of them are difficult to scale up. Supercritical fluid (SCF) is an important tool to produce micro/nanoparticles with a narrow size distribution and high encapsulation efficiency. The aim of this work was to produce cetyl palmitate SLNs using SCF to be loaded with praziquantel (PZQ) as an insoluble model drug. The mean particle size (nm), polydispersity index (PdI), zeta potential, and encapsulation efficiency (EE) were determined on the freshly prepared samples, which were also subject of Differential Scanning Calorimetry (DSC), Fourier-Transform Infrared Spectroscopy (FTIR), drug release profile, and in vitro cytotoxicity analyses. PZQ-SLN exhibited a mean size of ~25 nm, PdI ~ 0.5, zeta potential ~-28 mV, and EE 88.37%. The DSC analysis demonstrated that SCF reduced the crystallinity of cetyl palmitate and favored the loading of PZQ into the lipid matrices. No chemical interaction between the PZQ and cetyl palmitate was revealed by FTIR analysis, while the release or PZQ from SLN followed the Weibull model. PZQ-SLN showed low cytotoxicity against fibroblasts cell lines. This study demonstrates that SCF may be a suitable scale-up procedure for the production of SLN, which have shown to be an appropriate carrier for PZQ.


Subject(s)
Cell Proliferation/drug effects , Lipids/chemistry , Nanoparticles/chemistry , Praziquantel/chemistry , Carbon Dioxide/chemistry , Cell Line , Chromatography, Supercritical Fluid , Fibroblasts/drug effects , Humans , Palmitates/chemistry , Praziquantel/pharmacology
16.
Carbohydr Polym ; 222: 115001, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31320101

ABSTRACT

Hyaluronic acid (HA) is a ubiquitous polysaccharide with diverse biological functions. Is known that in the intestinal epithelium, the exogenous HA of molar mass ≥105 Da orally administered antagonizes TLR4 overexpression resulting from dysbiosis and promotes immunomodulation in multifactorial crosstalk, thus helping to treat or to prevent injuries. As macromolecules mediate cell signaling, the three-dimensional structure of HA plays a vital role in those functions. Introducing HA in terms of its molecular structure, its spatial architecture as dependent on pH, concentration and molar mass, occurrence, biological functions and turnover in the tissues, this review addresses the HA in the gastrointestinal system, the molecular dynamics of intestinal uptake and signaling, immunomodulation at intestinal and systemic levels and HA fate to other tissues. Finally, at the light of these behaviors, a nanotechnological approach is presented as progress in the field of the oral HA administration and discussed with perspectives for future developments.

17.
Recent Pat Drug Deliv Formul ; 12(1): 65-74, 2018.
Article in English | MEDLINE | ID: mdl-29345599

ABSTRACT

AIMS AND BACKGROUND: The design and development of an effective medicine are, however, often faced with a number of challenges. One of them is the close relationship of drug's bioavailability with solubility, dissolution rate and permeability. The use of curcumin's (CUR) therapeutic potential is limited by its poor water solubility and low chemical stability. The purpose was to evaluate the effect of polymer and solid dispersion (SD) preparation techniques to enhance the aqueous solubility, dissolution rate and stability of the CUR. The recent patents on curcumin SD were reported as (i) curcumin with polyvinylpyrrolidone (CN20071 32500 20071214, WO2006022012 and CN20151414227 20150715), (ii) curcumin-zinc/polyvinylpyrrolidone (CN20151414227 20150715), (iii) curcumin-poloxamer 188 (CN2008171177 20080605), (iv) curcumin SD prepared by melting method (CN20161626746-20160801). MATERIALS AND METHODS: SD obtained by co-preciptation or microwave fusion and the physical mixture of CUR with Poloxamer-407 (P-407), Hydroxypropylmetylcellulose-K4M (HPMC K4M) and Polyvinylpyrrolidone-K30 (PVP-K30) were prepared at the ratios of 1:2; 1:1 and 2:1. The samples were evaluated by solubility, stability, dissolution rate and characterized by SEM, PXRD, DSC and FTIR. RESULTS: The solubility, stability (pH 7.0) and dissolution rate were significantly greater for SD (CUR:P-407 1:2). The PXRD,SEM and DSC indicated a change in the crystalline state of CUR. The enhancement of solubility was dependent on a combination of factors including the weight ratio, preparation techniques and carrier properties. The drug release data fitted well with the Weibull equation, indicating that the drug release was controlled by diffusion, polymer relaxation and erosion occurring simultaneously. CONCLUSION: Thus, these SDs, specifically CUR:P-407 1:2 w/w, can overcome the barriers of poor bioavailability to reap many beneficial properties.


Subject(s)
Curcumin/administration & dosage , Curcumin/chemistry , Delayed-Action Preparations , Drug Liberation , Epoxy Compounds/chemistry , Ethylene Oxide/chemistry , Patents as Topic , Polymers/chemistry , Crystallization , Drug Stability , Hypromellose Derivatives/chemistry , Poloxamer/chemistry , Povidone/chemistry , Solubility
18.
AAPS PharmSciTech ; 19(1): 225-231, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28681332

ABSTRACT

The last century, more precisely after 1945, was marked by major advances in the treatment of infectious diseases which promoted a decrease in mortality and morbidity. Despite these advances, currently the development of antimicrobial resistance has been growing drastically and therefore there is a pressing need to search for new compounds. Silver nanoparticles (AgNps) have been demonstrating good antimicrobial activity against different bacteria, viruses, and fungi. Curcumin (CUR) extracted from rhizomes of Curcuma longa has a variety of applications including antiinflammatory, antioxidant, and antibacterial agent. The association between silver nanoparticles and curcumin in a formulation can be a good alternative to control infectious diseases due the antimicrobial properties of both compounds. The objective of this work was to develop a formulation composed of a thermoresponsive gel-with antimicrobial and antioxidant properties due to the association of AgNps with PVP and PVA polymers. After AgNp synthesis, these were incorporated together with the previously prepared CUR/P407 (1:2) solid dispersion (SD) into a polymer dispersion of 20% P407 (thermosensitive gel). Our results showed that the association between the AgNps with CUR SD demonstrated good antioxidant activity as compared to the standard compound. Measures of MIC showed more efficacy against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) than for Gram-positive bacteria (Staphylococcus aureus). This association enhances antimicrobial activity against E. coli and P aeruginosa and added antioxidant value in formulations.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Curcumin/pharmacology , Metal Nanoparticles , Silver/pharmacology , Drug Combinations , Escherichia coli/drug effects , Gels , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
19.
Int J Pharm ; 532(1): 139-148, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-28870767

ABSTRACT

Now-a-days development of microbial resistancce have become one of the most important global public health concerns. It is estimated that about 2 million people are infected in USA with multidrug resistant bacteria and out of these, about 23,000 die per year. In Europe, the number of deaths associated with infection caused by MDR bacteria is about 25,000 per year, However, the situation in Asia and other devloping countries is more critical. Considering the increasing rate of antibiotic resistance in various pathogens, it is estimated that MDR organisms can kill about 10 million people every year by 2050. The use of antibiotics in excessive and irresponsible manner is the main reason towards its ineffectiveness. However, in this context, promising application of nanotechnology in our everyday life has generated a new avenue for the development of potent antimicrobial materials and compounds (nanoantimicrobials) capable of dealing with microbial resistance. The devlopement and safe incorporation of nanoantimicrobials will bring a new revolution in health sector. In this review, we have critically focused on current worldwide situation of antibiotic resistance. In addition, the role of various nanomaterials in the management of microbial resistance and the possible mechanisms for antibacterial action of nanoparticles alone and nanoparticle-antibiotics conjuagte are also discussed.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Drug Delivery Systems , Drug Resistance, Bacterial/drug effects , Metal Nanoparticles/administration & dosage , Animals , Anti-Bacterial Agents/pharmacology , Polymers/administration & dosage , Polymers/pharmacology
20.
IET Nanobiotechnol ; 11(5): 552-556, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28745288

ABSTRACT

The increasing and alarming panorama of bacterial infections and associated morbidities that occur during medical and hospital procedures makes the development of technologies that aid in controlling such bacterial infections of utmost importance. Recent studies have shown that formulations with metal nanoparticles exhibit good antibacterial properties against a broad spectrum of microorganisms. Moreover, it was demonstrated that some biologically active polymeric materials, when applied in combination with chemical antimicrobial agents, enhance the therapeutic action of the latter. The research effort entertained herein aimed at the physico-chemical characterisation of silver nanoparticles obtained by chemical reduction, stabilised by bioactive polymers polyvinyl alcohol and polyvinylpyrrolidone, and further co-stabilised by pluronic F68. Scanning electron microscopy images of the nanoparticles produced, coated with different stabilisers, have shown that the chemical nature of the stabilisation effect promoted incorporation of pluronic in the nanoparticles and was closely related to an increase in the silver concentration in the nanoparticle samples obtained via energy-dispersive X-ray spectroscopy. The study described herein also shows that the nature of the stabiliser favours the interaction of pluronic F68 with samples containing silver nanoparticles.


Subject(s)
Metal Nanoparticles/chemistry , Poloxamer/chemistry , Polyvinyl Alcohol/chemistry , Povidone/chemistry , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Poloxamer/pharmacology , Polyvinyl Alcohol/pharmacology , Povidone/pharmacology , Spectrometry, X-Ray Emission , Spectrophotometry, Ultraviolet , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...