Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Res Sq ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746157

ABSTRACT

The precise classification of copy number variants (CNVs) presents a significant challenge in genomic medicine, primarily due to the complex nature of CNVs and their diverse impact on genetic disorders. This complexity is compounded by the limitations of existing methods in accurately distinguishing between benign, uncertain, and pathogenic CNVs. Addressing this gap, we introduce CNVoyant, a machine learning-based multi-class framework designed to enhance the clinical significance classification of CNVs. Trained on a comprehensive dataset of 52,176 ClinVar entries across pathogenic, uncertain, and benign classifications, CNVoyant incorporates a broad spectrum of genomic features, including genome position, disease-gene annotations, dosage sensitivity, and conservation scores. Models to predict the clinical significance of copy number gains and losses were trained independently. Final models were selected after testing 29 machine learning architectures and 10,000 hyperparameter combinations each for deletions and duplications via 5-fold cross-validation. We validate the performance of the CNVoyant by leveraging a comprehensive set of 21,574 CNVs from the DECIPHER database, a highly regarded resource known for its extensive catalog of chromosomal imbalances linked to clinical outcomes. Compared to alternative approaches, CNVoyant shows marked improvements in precision-recall and ROC AUC metrics for binary pathogenic classifications while going one step further, offering multi-classification of clinical significance and corresponding SHAP explainability plots. This large-scale validation demonstrates CNVoyant's superior accuracy and underscores its potential to aid genomic researchers and clinical geneticists in interpreting the clinical implications of real CNVs.

2.
Neoreviews ; 25(3): e127-e138, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38425196

ABSTRACT

Clinicians practicing in a modern NICU are noticing an increase in the proportion of patients who undergo genetic testing as well as changes in the types of genetic testing patients receive. These trends are not surprising given the increasing recognition of the genetic causes of neonatal illness and recent advances in genetic technology. Yet, the expansion of genetic testing in the NICU also raises a number of ethical questions. In this article, we will review the ethical issues raised by genetic testing, with a focus on the practical implications for neonatologists. First, we outline the complexities of measuring benefit, or utility, for neonatal genetic testing. Next, we discuss potential harms such as inequity, unexpected findings, disability biases, and legal risks. Finally, we conclude with a discussion of ethical issues related to consent for genetic testing. Throughout this article, we highlight solutions to challenges toward the ultimate goal of minimizing harms and maximizing the substantial potential benefits of genetic medicine in the NICU.


Subject(s)
Genetic Testing , Intensive Care Units, Neonatal , Infant, Newborn , Humans
4.
Genet Med ; 25(10): 100926, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37422715

ABSTRACT

PURPOSE: To describe variation in genomic medicine services across level IV neonatal intensive care units (NICUs) in the United States and Canada. METHODS: We developed and distributed a novel survey to the 43 level IV NICUs belonging to the Children's Hospitals Neonatal Consortium, requesting a single response per site from a clinician with knowledge of the provision of genomic medicine services. RESULTS: Overall response rate was 74% (32/43). Although chromosomal microarray and exome or genome sequencing (ES or GS) were universally available, access was restricted for 22% (7/32) and 81% (26/32) of centers, respectively. The most common restriction on ES or GS was requiring approval by a specialist (41%, 13/32). Rapid ES/GS was available in 69% of NICUs (22/32). Availability of same-day genetics consultative services was limited (41%, 13/32 sites), and pre- and post-test counseling practices varied widely. CONCLUSION: We observed large inter-center variation in genomic medicine services across level IV NICUs: most notably, access to rapid, comprehensive genetic testing in time frames relevant to critical care decision making was limited at many level IV Children's Hospitals Neonatal Consortium NICUs despite a significant burden of genetic disease. Further efforts are needed to improve access to neonatal genomic medicine services.

5.
Article in English | MEDLINE | ID: mdl-37230770

ABSTRACT

Pathogenic variants in MECOM, a gene critical to the self-renewal and proliferation of hematopoietic stem cells, are known to cause a rare bone marrow failure syndrome associated with amegakaryocytic thrombocytopenia and bilateral radioulnar synostosis known as RUSAT2. However, the spectrum of disease seen with causal variants in MECOM is broad, ranging from mildly affected adults to fetal loss. We report two cases of infants born preterm who presented at birth with symptoms of bone marrow failure including severe anemia, hydrops, and petechial hemorrhages; radioulnar synostosis was not observed in either patient, and, unfortunately, neither infant survived. In both cases, genomic sequencing revealed de novo variants in MECOM considered to be responsible for their severe presentations. These cases add to the growing body of literature that describe MECOM-associated disease, particularly MECOM as a cause of fetal hydrops due to bone marrow failure in utero. Furthermore, they support the use of a broad sequencing approach for perinatal diagnosis, as MECOM is absent from available targeted gene panels for hydrops, and highlight the importance of postmortem genomic investigation.


Subject(s)
Anemia , Hydrops Fetalis , Infant, Newborn , Pregnancy , Infant , Female , Adult , Humans , Hydrops Fetalis/genetics , Hydrops Fetalis/diagnosis , Transcription Factors , Bone Marrow Failure Disorders/complications , MDS1 and EVI1 Complex Locus Protein
6.
Pediatr Pulmonol ; 2023 May 16.
Article in English | MEDLINE | ID: mdl-37191361

ABSTRACT

Newly developing genomic technologies are an increasingly important part of clinical care and thus, it is not only important to understand the technologies and their limitations, but to also interpret the findings in an actionable fashion. Clinical geneticists and genetic counselors are now an integral part of the clinical team and are able to bridge the complexities of this rapidly changing science between the bedside clinicians and patients. This manuscript reviews the terminology, the current technology, some of the known genetic disorders that result in lung disease, and indications for genetic testing with associated caveats. Because this field is evolving quickly, we also provide links to websites that provide continuously updated information important for integrating genomic technology results into clinical decision-making.

7.
J Med Genet ; 60(10): 999-1005, 2023 10.
Article in English | MEDLINE | ID: mdl-37185208

ABSTRACT

PURPOSE: ARF1 was previously implicated in periventricular nodular heterotopia (PVNH) in only five individuals and systematic clinical characterisation was not available. The aim of this study is to provide a comprehensive description of the phenotypic and genotypic spectrum of ARF1-related neurodevelopmental disorder. METHODS: We collected detailed phenotypes of an international cohort of individuals (n=17) with ARF1 variants assembled through the GeneMatcher platform. Missense variants were structurally modelled, and the impact of several were functionally validated. RESULTS: De novo variants (10 missense, 1 frameshift, 1 splice altering resulting in 9 residues insertion) in ARF1 were identified among 17 unrelated individuals. Detailed phenotypes included intellectual disability (ID), microcephaly, seizures and PVNH. No specific facial characteristics were consistent across all cases, however microretrognathia was common. Various hearing and visual defects were recurrent, and interestingly, some inflammatory features were reported. MRI of the brain frequently showed abnormalities consistent with a neuronal migration disorder. CONCLUSION: We confirm the role of ARF1 in an autosomal dominant syndrome with a phenotypic spectrum including severe ID, microcephaly, seizures and PVNH due to impaired neuronal migration.


Subject(s)
Intellectual Disability , Microcephaly , Periventricular Nodular Heterotopia , Humans , Brain/diagnostic imaging , Genotype , Intellectual Disability/genetics , Phenotype , Seizures/genetics
8.
Front Pediatr ; 11: 1081802, 2023.
Article in English | MEDLINE | ID: mdl-36861082

ABSTRACT

Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is an autosomal recessive condition of impaired beta-oxidation. Traditionally, treatment included restriction of dietary long-chain fatty acids via a low-fat diet and supplementation of medium chain triglycerides. In 2020, triheptanoin received FDA approval as an alternative source of medium chain fatty acids for individuals with long-chain fatty acid oxidation disorders (LC-FAOD). We present a case of a moderately preterm neonate born at 33 2/7 weeks gestational age with LCHADD who received triheptanoin and developed necrotizing enterocolitis (NEC). Prematurity is known as a major risk factor for NEC, with risk increasing with decreasing gestational age. To our knowledge, NEC has not previously been reported in patients with LCHADD or with triheptanoin use. While metabolic formula is part of the standard of care for LC-FAOD in early life, preterm neonates may benefit from more aggressive attempts to use skimmed human milk to minimize exposure to formula during the risk period for NEC during feed advancement. This risk period may be longer in neonates with LC-FAOD compared to otherwise healthy premature neonates.

9.
Hum Genet ; 142(2): 161-164, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36355221

ABSTRACT

Available evidence does not support limiting the use of rapid or ultra-rapid exome or genome sequencing in critically ill neonates to cases of predicted high diagnostic yield. Such testing is best positioned to improve neonatal care when test utilization is conceptualized within the total care of the family with a goal of rapid resolution of the diagnostic odyssey.


Subject(s)
Neonatology , Infant, Newborn , Humans , Genetic Testing , High-Throughput Nucleotide Sequencing , Exome Sequencing , Chromosome Mapping
10.
Am J Med Genet C Semin Med Genet ; 190(2): 231-242, 2022 06.
Article in English | MEDLINE | ID: mdl-35872606

ABSTRACT

Technological advances in both genome sequencing and prenatal imaging are increasing our ability to accurately recognize and diagnose Mendelian conditions prenatally. Phenotype-driven early genetic diagnosis of fetal genetic disease can help to strategize treatment options and clinical preventive measures during the perinatal period, to plan in utero therapies, and to inform parental decision-making. Fetal phenotypes of genetic diseases are often unique and at present are not well understood; more comprehensive knowledge about prenatal phenotypes and computational resources have an enormous potential to improve diagnostics and translational research. The Human Phenotype Ontology (HPO) has been widely used to support diagnostics and translational research in human genetics. To better support prenatal usage, the HPO consortium conducted a series of workshops with a group of domain experts in a variety of medical specialties, diagnostic techniques, as well as diseases and phenotypes related to prenatal medicine, including perinatal pathology, musculoskeletal anomalies, neurology, medical genetics, hydrops fetalis, craniofacial malformations, cardiology, neonatal-perinatal medicine, fetal medicine, placental pathology, prenatal imaging, and bioinformatics. We expanded the representation of prenatal phenotypes in HPO by adding 95 new phenotype terms under the Abnormality of prenatal development or birth (HP:0001197) grouping term, and revised definitions, synonyms, and disease annotations for most of the 152 terms that existed before the beginning of this effort. The expansion of prenatal phenotypes in HPO will support phenotype-driven prenatal exome and genome sequencing for precision genetic diagnostics of rare diseases to support prenatal care.


Subject(s)
Computational Biology , Placenta , Infant, Newborn , Humans , Female , Pregnancy , Computational Biology/methods , Phenotype , Rare Diseases , Exome Sequencing
11.
Semin Pediatr Neurol ; 42: 100973, 2022 07.
Article in English | MEDLINE | ID: mdl-35868725

ABSTRACT

Congenital brain malformations are abnormalities present at birth that can result from developmental disruptions at various embryonic or fetal stages. The clinical presentation is nonspecific and can include developmental delay, hypotonia, and/or epilepsy. An informed combination of imaging and genetic testing enables early and accurate diagnosis and management planning. In this article, we provide a streamlined approach to radiologic phenotyping and genetic evaluation of brain malformations. We will review the clinical workflow for brain imaging and genetic testing with up-to-date ontologies and literature references. The organization of this article introduces a streamlined approach for imaging-based etiologic classification into malformative, destructive, and migrational abnormalities. Specific radiologic ontologies are then discussed in detail, with correlation of key neuroimaging features to embryology and molecular pathogenesis.


Subject(s)
Nervous System Malformations , Brain/pathology , Humans , Infant, Newborn , Magnetic Resonance Imaging , Nervous System Malformations/diagnosis , Neuroimaging/methods
12.
Semin Pediatr Neurol ; 42: 100972, 2022 07.
Article in English | MEDLINE | ID: mdl-35868729

ABSTRACT

Neurogenetic and metabolic diseases often present in the neonatal period, masquerading as other disorders, most commonly as neonatal encephalopathy and seizures. Advancements in our understanding of inborn errors of metabolism are leading to an increasing number of therapeutic options. Many of these treatments can improve long-term neurodevelopment and seizure control. However, the treatments are frequently condition-specific. A high index of suspicion is required for prompt identification and treatment. When suspected, simultaneous metabolic and molecular testing are recommended along with concurrent treatment.


Subject(s)
Brain Diseases , Infant, Newborn, Diseases , Metabolism, Inborn Errors , Neurosciences , Humans , Infant, Newborn , Infant, Newborn, Diseases/diagnosis , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/therapy , Seizures/diagnosis , Seizures/therapy
13.
J Mol Diagn ; 24(9): 1031-1040, 2022 09.
Article in English | MEDLINE | ID: mdl-35718094

ABSTRACT

Chromosomal microarray (CMA) is a testing modality frequently used in pediatric patients; however, published data on its utilization are limited to the genetic setting. We performed a database search for all CMA testing performed from 2010 to 2020, and delineated the diagnostic yield based on patient characteristics, including sex, age, clinical specialty of providers, indication of testing, and pathogenic finding. The indications for testing were further categorized into Human Phenotype Ontology categories for analysis. This study included a cohort of 14,541 patients from 29 different medical specialties, of whom 30% were from the genetics clinic. The clinical indications for testing suggested that neonatology patients demonstrated the greatest involvement of multiorgan systems, involving the most Human Phenotype Ontology categories, compared with developmental behavioral pediatrics and neurology patients being the least. The top pathogenic findings for each specialty differed, likely due to the varying clinical features and indications for testing. Deletions involving the 22q11.21 locus were the top pathogenic findings for patients presenting to genetics, neonatology, cardiology, and surgery. Our data represent the largest pediatric cohort published to date. This study is the first to demonstrate the diagnostic utility of this assay for patients seen in the setting of different specialties, and it provides normative data of CMA results among a general pediatric population referred for testing because of variable clinical presentations.


Subject(s)
Pediatrics , Child , Cohort Studies , Humans , Microarray Analysis/methods
14.
Front Genet ; 12: 664278, 2021.
Article in English | MEDLINE | ID: mdl-34194468

ABSTRACT

A 32-week premature infant presented with respiratory failure, later progressing to pulmonary hypertension (PH), liver failure, lactic acidosis, and encephalopathy. Using exome sequencing, this patient was diagnosed with a rare Polymerase Gamma (POLG)-related mitochondrial DNA (mtDNA) depletion syndrome. This case demonstrates that expanding the differential to uncommon diagnoses is important for complex infants, even in premature neonates whose condition may be explained partially by their gestational age (GA). It also shows that patients with complex neonatal diseases with significant family history may benefit from exome sequencing for diagnosis.

15.
J Perinatol ; 41(9): 2375, 2021 09.
Article in English | MEDLINE | ID: mdl-34108641
16.
Cell Genom ; 1(2)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-35072136

ABSTRACT

The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits.

17.
Article in English | MEDLINE | ID: mdl-32532881

ABSTRACT

Wilson disease is a medically actionable rare autosomal recessive disorder of defective copper excretion caused by mutations in ATP7B, one of two highly evolutionarily conserved copper-transporting ATPases. Hundreds of disease-causing variants in ATP7B have been reported to public databases; more than half of these are missense changes, and a significant proportion are presumed unequivocal loss-of-function variants (nonsense, frameshift, and canonical splice site). Current molecular genetic testing includes sequencing all coding exons (±10 bp) as well as deletion/duplication testing, with reported sensitivity of >98%. We report a proband from a consanguineous family with a biochemical phenotype consistent with early-onset Wilson disease who tested negative on conventional molecular genetic testing. Using a combination of whole-genome sequencing and transcriptome sequencing, we found that the proband's disease is due to skipping of exons 6-7 of the ATP7B gene associated with a novel intronic variant (NM_000053.4:c.1947-19T > A) that alters a putative splicing enhancer element. This variant was also homozygous in the proband's younger sister, whose subsequent clinical evaluations revealed biochemical evidence of Wilson disease. Our work adds to emerging evidence that ATP7B exon skipping from deep intronic variants outside typical splice junctions is an important mechanism of Wilson disease; the variants responsible may elude standard genetic testing.


Subject(s)
Copper-Transporting ATPases/genetics , Exons , Hepatolenticular Degeneration/diagnosis , Hepatolenticular Degeneration/genetics , Introns , Mutation , RNA Splicing , Child , Genetic Association Studies , Genetic Predisposition to Disease , Genomics/methods , Humans , Male , Pedigree , Whole Genome Sequencing
18.
Pediatr Res ; 87(2): 338-344, 2020 01.
Article in English | MEDLINE | ID: mdl-31578042

ABSTRACT

We present evidence from diverse disciplines and populations to identify the current and emerging role of genomics in prevention from both medical and public health perspectives as well as key challenges and potential untoward consequences of increasing the role of genomics in these endeavors. We begin by comparing screening in healthy populations (newborn screening), with testing in symptomatic populations, which may incidentally identify secondary findings and at-risk relatives. Emerging evidence suggests that variants in genes subject to the reporting of secondary findings are more common than expected in patients who otherwise would not meet the criteria for testing and population testing for variants in these genes may more precisely identify discrete populations to target for various prevention strategies starting in childhood. Conversely, despite its theoretical promise, recent studies attempting to demonstrate benefits of next-generation sequencing for newborn screening have instead demonstrated numerous barriers and pitfalls to this approach. We also examine the special cases of pharmacogenomics and polygenic risk scores as examples of ways genomics can contribute to prevention amongst a broader population than that affected by rare Mendelian disease. We conclude with unresolved questions which will benefit from future investigations of the role of genomics in disease prevention.


Subject(s)
Genomics/trends , Neonatal Screening/trends , Pediatrics/trends , Precision Medicine/trends , Preventive Health Services/trends , Preventive Medicine/trends , Child , Child, Preschool , Clinical Decision-Making , Diffusion of Innovation , Early Diagnosis , Forecasting , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Pharmacogenetics/trends , Risk Assessment , Risk Factors
20.
PLoS Genet ; 7(4): e1001365, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21533219

ABSTRACT

Coordination of fetal maturation with birth timing is essential for mammalian reproduction. In humans, preterm birth is a disorder of profound global health significance. The signals initiating parturition in humans have remained elusive, due to divergence in physiological mechanisms between humans and model organisms typically studied. Because of relatively large human head size and narrow birth canal cross-sectional area compared to other primates, we hypothesized that genes involved in parturition would display accelerated evolution along the human and/or higher primate phylogenetic lineages to decrease the length of gestation and promote delivery of a smaller fetus that transits the birth canal more readily. Further, we tested whether current variation in such accelerated genes contributes to preterm birth risk. Evidence from allometric scaling of gestational age suggests human gestation has been shortened relative to other primates. Consistent with our hypothesis, many genes involved in reproduction show human acceleration in their coding or adjacent noncoding regions. We screened >8,400 SNPs in 150 human accelerated genes in 165 Finnish preterm and 163 control mothers for association with preterm birth. In this cohort, the most significant association was in FSHR, and 8 of the 10 most significant SNPs were in this gene. Further evidence for association of a linkage disequilibrium block of SNPs in FSHR, rs11686474, rs11680730, rs12473870, and rs1247381 was found in African Americans. By considering human acceleration, we identified a novel gene that may be associated with preterm birth, FSHR. We anticipate other human accelerated genes will similarly be associated with preterm birth risk and elucidate essential pathways for human parturition.


Subject(s)
Black or African American/genetics , Evolution, Molecular , Parturition/genetics , Polymorphism, Single Nucleotide , Premature Birth/genetics , Adult , Animals , Case-Control Studies , Cohort Studies , Female , Finland , Gene Frequency , Genome-Wide Association Study , Genotype , Humans , Linkage Disequilibrium , Models, Genetic , Receptors, FSH/genetics , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...