Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Geroscience ; 46(3): 3085-3103, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38191834

ABSTRACT

Colitis, a subtype of inflammatory bowel disease (IBD), is a multifactorial disorder characterized by chronic inflammation of the colon. Among various experimental models used in the study of IBD, the chemical colitogenic dextran sulfate sodium (DSS) is most commonly employed to induce colitis in vivo. In the search for new therapeutic strategies, Fisetin, a flavonoid found in many fruits and vegetables, has recently garnered attention for its senolytic properties. Female mice were administered 2.5% DSS in sterile drinking water and were subsequently treated with Fisetin or vehicle by oral gavage. DSS significantly upregulated beta-galactosidase activity in colonic proteins, while Fisetin remarkably inhibited its activity to baseline levels. Particularly, qPCR revealed that the senescence and inflammation markers Vimentin and Ptgs2 were elevated by DSS exposure with Fisetin treatment inhibiting the expression of p53, Bcl2, Cxcl1, and Mcp1, indicating that the treatment reduced senescent cell burden in the DSS targeted intestine. Alongside, senescence and inflammation associated miRNAs miR-149-5p, miR-96-5p, miR-34a-5p, and miR-30e-5p were significantly inhibited by DSS exposure and restored by Fisetin treatment, revealing novel targets for the treatment of IBDs. Metagenomics was implemented to assess impacts on the microbiota, with DSS increasing the prevalence of bacteria in the phyla Bacteroidetes. Meanwhile, Fisetin restored gut health through increased abundance of Akkermansia muciniphila, which is negatively correlated with senescence and inflammation. Our study suggests that Fisetin mitigates DSS-induced colitis by targeting senescence and inflammation and restoring beneficial bacteria in the gut indicating its potential as a therapeutic intervention for IBDs.


Subject(s)
Colitis , Flavonols , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , MicroRNAs , Female , Animals , Mice , Disease Models, Animal , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammation , Inflammatory Bowel Diseases/microbiology , Biomarkers
2.
Bioinformation ; 19(3): 278-283, 2023.
Article in English | MEDLINE | ID: mdl-37808384

ABSTRACT

The study estimates the usability and attitude assessment of users for India's first approved rapid antigen self-test kit; the CoviSelf™. India approved its first AI-powered self-test for Covid-19 in April 2021 a few weeks after the first approval in the US. We present here a study on usability and attitude assessment of users of India's first approved rapid antigen self-test kit; the CoviSelf™. The study evaluates participants' understanding of and performance of test procedure and interprets the results. Analysis revealed that more than 90% study participants followed steps correctly as illustrated in the user's manual. Age group and gender-based analysis showed comparable scores for usability of the test kit suggesting users of different age groups has same ease in using the test kit. What we learnt from this study could be start of self-test revolution, where rapid tests could expand the access of diagnostics for hundreds of diseases including HIV, HPV, and dengue to millions of people who could not get access to diagnostics because we lacked manpower or facility to conduct tests. Self-testing could break the barriers for diagnostics that Internet did for information.

3.
Geroscience ; 45(5): 2819-2834, 2023 10.
Article in English | MEDLINE | ID: mdl-37213047

ABSTRACT

The prevalence of age-related cognitive disorders/dementia is increasing, and effective prevention and treatment interventions are lacking due to an incomplete understanding of aging neuropathophysiology. Emerging evidence suggests that abnormalities in gut microbiome are linked with age-related cognitive decline and getting acceptance as one of the pillars of the Geroscience hypothesis. However, the potential clinical importance of gut microbiome abnormalities in predicting the risk of cognitive decline in older adults is unclear. Till now the majority of clinical studies were done using 16S rRNA sequencing which only accounts for analyzing bacterial abundance, while lacking an understanding of other crucial microbial kingdoms, such as viruses, fungi, archaea, and the functional profiling of the microbiome community. Utilizing data and samples of older adults with mild cognitive impairment (MCI; n = 23) and cognitively healthy controls (n = 25). Our whole-genome metagenomic sequencing revealed that the gut of older adults with MCI harbors a less diverse microbiome with a specific increase in total viruses and a decrease in bacterial abundance compared with controls. The virome, bacteriome, and microbial metabolic signatures were significantly distinct in subjects with MCI versus controls. Selected bacteriome signatures show high predictive potential of cognitive dysfunction than virome signatures while combining virome and metabolic signatures with bacteriome boosts the prediction power. Altogether, the results from our pilot study indicate that trans-kingdom microbiome signatures are significantly distinct in MCI gut compared with controls and may have utility for predicting the risk of developing cognitive decline and dementia- debilitating public health problems in older adults.


Subject(s)
Cognitive Dysfunction , Dementia , Microbiota , Humans , Aged , RNA, Ribosomal, 16S/genetics , Pilot Projects , Microbiota/genetics , Bacteria/genetics
4.
Int. microbiol ; 26(2): 257-267, May. 2023. graf
Article in English | IBECS | ID: ibc-220220

ABSTRACT

Indian lotus (Nelumbo nucifera) is one of the dominant aquatic plants cultivated in Dal Lake, situated at 1586 m above mean sea level (MSL) in the northeast of Srinagar, Kashmir. Despite their economic and ecological role, the microbial communities associated with the lotus plant are still unexplored. In this study, we investigated the prokaryotic communities on surfaces of different lotus microhabitats (roots, rhizome, leaves, flowers, and fruits), lake water, and sediments using 16S rRNA gene amplicon sequencing. Overall, prokaryotic diversity decreased significantly on the surface of lotus microhabitats in comparison to the lake water and sediments. Among the microhabitats of lotus, roots and leaves harbored more diverse communities in comparison to rhizomes, fruits, and flowers. A total of 98 genera were shared by lotus and the Dal Lake sediments and water. However, significant differences were found in their relative abundance; for example, Pseudomonas was the most dominant genus on the majority of lotus microhabitats. On the other hand, Flavobacterium was highly abundant in the lake water, while a higher abundance of Acinetobacter was recorded in sediments. Additionally, we also noted the presence of potential human pathogenic genera including Escherichia-Shigella, Enterobacter, Pantoea, Raoultella, Serratia, and Sphingomonas on the lotus microhabitats. Predicted functions of prokaryotic communities revealed a higher abundance of genes associated with nutrient uptake in the microhabitats of the lotus. This study offered first-hand information on the prokaryotic communities harbored by lotus plants and water and sediments of the Dal Lake and demonstrated the adaptation of diverse communities to microhabitats of lotus.(AU)


Subject(s)
Humans , Lakes , Rhizosphere , Sediments , Nelumbo , Prokaryotic Cells , Research
5.
Int Microbiol ; 26(2): 257-267, 2023 May.
Article in English | MEDLINE | ID: mdl-36378397

ABSTRACT

Indian lotus (Nelumbo nucifera) is one of the dominant aquatic plants cultivated in Dal Lake, situated at 1586 m above mean sea level (MSL) in the northeast of Srinagar, Kashmir. Despite their economic and ecological role, the microbial communities associated with the lotus plant are still unexplored. In this study, we investigated the prokaryotic communities on surfaces of different lotus microhabitats (roots, rhizome, leaves, flowers, and fruits), lake water, and sediments using 16S rRNA gene amplicon sequencing. Overall, prokaryotic diversity decreased significantly on the surface of lotus microhabitats in comparison to the lake water and sediments. Among the microhabitats of lotus, roots and leaves harbored more diverse communities in comparison to rhizomes, fruits, and flowers. A total of 98 genera were shared by lotus and the Dal Lake sediments and water. However, significant differences were found in their relative abundance; for example, Pseudomonas was the most dominant genus on the majority of lotus microhabitats. On the other hand, Flavobacterium was highly abundant in the lake water, while a higher abundance of Acinetobacter was recorded in sediments. Additionally, we also noted the presence of potential human pathogenic genera including Escherichia-Shigella, Enterobacter, Pantoea, Raoultella, Serratia, and Sphingomonas on the lotus microhabitats. Predicted functions of prokaryotic communities revealed a higher abundance of genes associated with nutrient uptake in the microhabitats of the lotus. This study offered first-hand information on the prokaryotic communities harbored by lotus plants and water and sediments of the Dal Lake and demonstrated the adaptation of diverse communities to microhabitats of lotus.


Subject(s)
Nelumbo , Humans , Nelumbo/genetics , Lakes , RNA, Ribosomal, 16S/genetics , Altitude , Water
6.
Bioinformation ; 17(3): 377-391, 2021.
Article in English | MEDLINE | ID: mdl-34092959

ABSTRACT

16S rRNA gene analysis is the most convenient and robust method for microbiome studies. Inaccurate taxonomic assignment of bacterial strains could have deleterious effects as all downstream analyses rely heavily on the accurate assessment of microbial taxonomy. The use of mock communities to check the reliability of the results has been suggested. However, often the mock communities used in most of the studies represent only a small fraction of taxa and are used mostly as validation of sequencing run to estimate sequencing artifacts. Moreover, a large number of databases and tools available for classification and taxonomic assignment of the 16S rRNA gene make it challenging to select the best-suited method for a particular dataset. In the present study, we used authentic and validly published 16S rRNA gene type strain sequences (full length, V3-V4 region) and analyzed them using a widely used QIIME pipeline along with different parameters of OTU clustering and QIIME compatible databases. Data Analysis Measures (DAM) revealed a high discrepancy in ratifying the taxonomy at different taxonomic hierarchies. Beta diversity analysis showed clear segregation of different DAMs. Limited differences were observed in reference data set analysis using partial (V3-V4) and full-length 16S rRNA gene sequences, which signify the reliability of partial 16S rRNA gene sequences in microbiome studies. Our analysis also highlights common discrepancies observed at various taxonomic levels using various methods and databases.

7.
Life Sci ; 278: 119622, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34015282

ABSTRACT

The human microbiome is a complex and dynamic ecosystem, and the imbalance of its microbial community structure from the normal state is termed dysbiosis. The dysbiotic gut microbiome has been proved to be related to several pathological conditions like Inflammatory Bowel Disease (IBD), Irritable Bowel Syndrome (IBS), Colorectal Cancer (CRC), etc., and several other extra-intestinal conditions like Type 1 & 2 diabetes, obesity, etc. The complex gut microbial ecosystem starts to build before the birth of an individual. It is known to get affected by several factors such as birth mode, individual lifestyle, dietary practices, medications, and antibiotics. A dysbiotic microbiome can potentially hamper host homeostasis due to its role in immune modulation, metabolism, nutrient synthesis, etc. Restoration of the dysbiotic gut microbiome has emerged as a promising aid and a better therapeutic approach. Several approaches have been investigated to achieve this goal, including prebiotics and probiotics, Fecal Microbiota Transplantation (FMT), extracellular vesicles, immune modulation, microbial metabolites, dietary interventions, and phages. This review discusses the various factors that influence the human microbiome with respect to their cause-effect relationship and the effect of gut microbiome compositional changes on the brain through the gut-brain axis. We also discuss the practices used globally for gut microbiome restoration purposes, along with their effectiveness.


Subject(s)
Dysbiosis/therapy , Gastrointestinal Microbiome , Animals , Dysbiosis/microbiology , Fecal Microbiota Transplantation , Homeostasis , Humans , Immunomodulation , Microbiota , Prebiotics/administration & dosage , Probiotics/therapeutic use
8.
Curr Microbiol ; 78(5): 2051-2060, 2021 May.
Article in English | MEDLINE | ID: mdl-33837467

ABSTRACT

Invasive plants are known to alter the soil microbial communities; however, the effects of co-occurring native and invasive congeners on the soil bacterial diversity and their predictive metabolic profiles are not known. Here, we compared the rhizosphere bacterial communities of invasive Prosopis juliflora and its native congener Prosopis cineraria using high-throughput sequencing of the 16S rRNA gene. Unweighted Pair Group Method with Arithmetic mean (UPGMA) based dendrogram revealed significant variation in the communities of these co-occurring Prosopis species. Additionally, Canonical Correspondence Analysis (CCA) based on microbial communities in addition to the soil physiochemical parameters viz. soil pH, electrical conductivity, moisture content and sampling depth showed ~ 80% of the variation in bacterial communities of the rhizosphere and control soil. We observed that Proteobacteria was the predominant phylum of P. juliflora rhizosphere and the control soil, while P. cineraria rhizosphere was dominated by Cyanobacteria. Notably, the invasive P. juliflora rhizosphere showed an enhanced abundance of bacterial phyla like Actinobacteria, Chloroflexi, Firmicutes and Acidobacteria compared to the native P. cineraria as well as the control soil. Predictive metagenomics revealed that the bacterial communities of the P. juliflora rhizosphere had a higher abundance of pathways involved in antimicrobial biosynthesis and degradation, suggesting probable exposure to enemy attack and an active response mechanism to counter it as compared to native P. cineraria. Interestingly, the higher antimicrobial biosynthesis predicted in the invasive rhizosphere microbiome is further corroborated by the fact that the bacterial isolates purified from the rhizosphere of P. juliflora belonged to genera like Streptomyces, Isoptericola and Brevibacterium from the phylum Actinobacteria, which are widely reported for their antibiotic production ability. In conclusion, our results demonstrate that the co-occurring native and invasive Prosopis species have significantly different rhizosphere bacterial communities in terms of composition, diversity and their predictive metabolic potentials. In addition, the rhizosphere microbiome of invasive Prosopis proffers it a fitness advantage and influences invasion success of the species.


Subject(s)
Microbiota , Prosopis , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil , Soil Microbiology
9.
Curr Microbiol ; 77(12): 4072-4084, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33079205

ABSTRACT

Pangong Tso is a long and narrow lake situated at an altitude of ~ 4266 m amsl in the Himalayan Plateau on the side of the India/China border. Biofilm has been observed in a small area near the shore of Pangong Tso. Bacterial communities of the lake sediment, water and biofilms were studied using amplicon sequencing of V3-V4 region of the 16S rRNA gene. The standard QIIME pipeline was used for analysis. The metabolic potential of the community was predicted using functional prediction tool Tax4Fun. Bacterial phyla Proteobacteria, followed by Bacteroidetes, Acidobacteria, Planctomycetes, Actinobacteria, and Firmicutes, were found to be dominant across these samples. Shannon's and Simpson's alpha diversity analysis revealed that sediment communities are the most diverse, and water communities are the least diverse. Principal Coordinates based beta diversity analysis showed significant variation in the bacterial communities of the water, sediment and biofilm samples. Bacterial phyla Verrucomicrobia, Deinococcus-Thermus and Cyanobacteria were explicitly enriched in the biofilm samples. Predictive functional profiling of these bacterial communities showed a higher abundance of genes involved in photosynthesis, biosynthesis of secondary metabolites, carbon fixation in photosynthetic organisms and glyoxylate and dicarboxylate metabolism in the biofilm sample. In conclusion, the Pangong Tso bacterial communities are quite similar to other saline and low-temperature lakes in the Tibetan Plateau. Bacterial community structure of the biofilm samples was significantly different from that of the water and sediment samples and enrichment of saprophytic communities was observed in the biofilm samples, indicating an important succession event in this high-altitude lake.


Subject(s)
Altitude , Geologic Sediments , Biodiversity , Biofilms , China , India , Lakes , RNA, Ribosomal, 16S/genetics , Saline Waters
10.
Syst Appl Microbiol ; 43(5): 126127, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32847793

ABSTRACT

Three strains of rhizobia isolated from effective root nodules of pea (Pisum sativum L.) collected from the Indian trans-Himalayas were characterized using 16S rRNA, atpD and recA genes. Phylogeny of the 16S rRNA genes revealed that the newly isolated strains were members of the genus Rhizobium with ≥99.9% sequence similarity to the members within the "Rhizobium leguminosarum" group. Phylogenetic analyses based on the concatenated sequences of atpD and recA gene, and 92 core genes extracted from the genome sequences indicated that strains JKLM 12A2T and JKLM 13E are grouped as a separate clade closely related to R. laguerreae FB206T. In contrast, the strain JKLM 19E was placed with "R. hidalgonense" FH14T. Whole-genome average nucleotide identity (ANI) values were 97.6% within strains JKLM 12A2T and JKLM 13E, and less than 94% with closely related species. The digital DNA-DNA hybridization (dDDH) values were 81.45 within the two strains and less than 54.8% to closely related species. The major cellular fatty acids were C18:1w7c in summed feature 8, C14:0 3OH/C16:1 iso I in summed feature 2, and C18:0. The DNA G+C content of JKLM 12A2T and JKLM 13E was 60.8mol%. The data on genomic, chemotaxonomic, and phenotypic characteristics indicates that the strains JKLM 12A2T and JKLM 13E represent a novel species, Rhizobium indicum sp. nov. The type strain is JKLM 12A2T (= MCC 3961T=KACC 21380T=JCM 33658T). However, the strain JKLM 19E represents a member of "R. hidalgonense" and the symbiovar viciae.


Subject(s)
Pisum sativum/microbiology , Rhizobium/classification , Rhizobium/isolation & purification , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Crops, Agricultural/microbiology , DNA, Bacterial/genetics , Fatty Acids/analysis , Genes, Bacterial , Genes, rRNA , Genome, Bacterial , Genomics , India , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhizobium/genetics , Rhizobium/physiology , Rhizobium leguminosarum/genetics , Sequence Analysis, DNA , Symbiosis
11.
Front Microbiol ; 11: 968, 2020.
Article in English | MEDLINE | ID: mdl-32582047

ABSTRACT

Rhizosphere microbiome significantly influences plant growth and productivity. Legume crops such as pea have often been used as a rotation crop along with rice cultivation in long-term conservation agriculture experiments in the acidic soils of the northeast region of India. It is essential to understand how the pea plant influences the soil communities and shapes its rhizosphere microbiome. It is also expected that the long-term application of nutrients and tillage practices may also have a lasting effect on the rhizosphere and soil communities. In this study, we estimated the bacterial communities by 16S rRNA gene amplicon sequencing of pea rhizosphere and bulk soils from a long-term experiment with multiple nutrient management practices and different tillage history. We also used Tax4Fun to predict the functions of bacterial communities. Quantitative polymerase chain reaction (qPCR) was used to estimate the abundance of total bacterial and members of Firmicutes in the rhizosphere and bulk soils. The results showed that bacterial diversity was significantly higher in the rhizosphere in comparison to bulk soils. A higher abundance of Proteobacteria was recorded in the rhizosphere, whereas the bulk soils have higher proportions of Firmicutes. At the genus level, proportions of Rhizobium, Pseudomonas, Pantoea, Nitrobacter, Enterobacter, and Sphingomonas were significantly higher in the rhizosphere. At the same time, Massilia, Paenibacillus, and Planomicrobium were more abundant in the bulk soils. Higher abundance of genes reported for plant growth promotion and several other genes, including iron complex outer membrane receptor, cobalt-zinc-cadmium resistance, sigma-70 factor, and ribonuclease E, was predicted in the rhizosphere samples in comparison to bulk soils, indicating that the pea plants shape their rhizosphere microbiome, plausibly to meet its requirements for nutrient uptake and stress amelioration.

12.
Int J Syst Evol Microbiol ; 70(5): 3278-3286, 2020 May.
Article in English | MEDLINE | ID: mdl-32375936

ABSTRACT

A novel bacterial strain, designated TOUT106T, was isolated from the surface of a tomato. The cells were rod-shaped, Gram-negative, encapsulated and non-motile. Strain TOUT106T grows best at 28 °C and pH 7.0 and can tolerate up to 2 % (w/v) NaCl. Based on 16S rRNA gene phylogeny, strain TOUT106T was placed close to the Salmonella clade, with close similarity to Salmonella enterica subsp. arizonae strain NCTC 8297T (98.42 %). Results of genome-based phylogenetic analysis revealed that strain TOUT106T is placed well in the Klebsiella-Raoultella clade, by forming a distinct branch with Klebsiella michiganensis DSM25444T, Klebsiella oxytoca NCTC132727T, Klebsiella grimontii 06D021T and Klebsiella pasteurii SB6412T. The genomic DNA G+C content of strain TOUT106T is 53.53 mol%. The average nucleotide identity values of TOUT106T were less than 86.5 % with closely related members of the family Enterobacteriaceae. The major fatty acids of strain TOUT106T were C16 : 0, C17:0 cyclo, C14:0 3OH/C16:1 iso, C14 : 0, C19:0 cyclo ω8c, C18:1 ω6c/C18:1 ω7c, C12 : 0 and C16:1 ω7c/C16:1 ω6c. Strain TOUT106T showed differences in physiological, phenotypic and protein profiles by MALDI-TOF MS compared to its closest relatives. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain TOUT106T could be distinguished from the recognized species of the genus Klebsiella. It is suggested to represent a novel species of this genus, for which the name Klebsiella indica sp. nov. is proposed. The type strain is TOUT106T (=MCC 2901T=KACC 21384T=JCM 33718T).


Subject(s)
Fruit/microbiology , Klebsiella/classification , Phylogeny , Solanum lycopersicum/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , India , Klebsiella/isolation & purification , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
13.
Sci Rep ; 10(1): 5685, 2020 03 30.
Article in English | MEDLINE | ID: mdl-32231240

ABSTRACT

The human microbiome plays a key role in maintaining host homeostasis and is influenced by age, geography, diet, and other factors. Traditionally, India has an established convention of extended family arrangements wherein three or more generations, bound by genetic relatedness, stay in the same household. In the present study, we have utilized this unique family arrangement to understand the association of age with the microbiome. We characterized stool, oral and skin microbiome of 54 healthy individuals from six joint families by 16S rRNA gene-based metagenomics. In total, 69 (1.03%), 293 (2.68%) and 190 (8.66%) differentially abundant OTUs were detected across three generations in the gut, skin and oral microbiome, respectively. Age-associated changes in the gut and oral microbiome of patrilineal families showed positive correlations in the abundance of phyla Proteobacteria and Fusobacteria, respectively. Genera Treponema and Fusobacterium showed a positive correlation with age while Granulicatella and Streptococcus showed a negative correlation with age in the oral microbiome. Members of genus Prevotella illustrated high abundance and prevalence as a core OTUs in the gut and oral microbiome. In conclusion, this study highlights that precise and perceptible association of age with microbiome can be drawn when other causal factors are kept constant.


Subject(s)
Age Factors , Microbiota/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Bacteria/genetics , Child , Child, Preschool , Family , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Humans , India/epidemiology , Male , Metagenome/genetics , Metagenomics/methods , Middle Aged , Mouth/microbiology , RNA, Ribosomal, 16S/genetics , Skin/microbiology
14.
J Biosci ; 44(5)2019 Oct.
Article in English | MEDLINE | ID: mdl-31719221

ABSTRACT

Ayurveda is one of the ancient systems of medicine which is widely practised as a personalized scientific approach towards the general wellness. Ayurvedic prakriti is broadly defined as the phenotypes which are determined on the basis of physical, psychological and physiological traits irrespective of their social, ethnic, dietary and geographical stature. Prakriti is the constitution of a person, which comprises vata, pitta, and kapha and is a key determinant of how one individual is different from the other. Human microbiome is considered the 'latest discovered' human organ and microbiome research reiterates the fundamental principles of Ayurveda for creating a healthy gut environment by maintaining the individual-specific microbiome. Hence, it is important to understand the association of human microbiome with the Ayurvedic prakriti of an individual. Here, we provide a comprehensive analysis of human microbiome from the gut, oral and skin samples of healthy individuals (n=18) by 16S rRNA gene-based metagenomics using standard QIIME pipeline. In the three different prakriti samples differential abundance of Bacteroides, Desulfovibrio, Parabacteroides, Slackia, and Succinivibrio was observed in the gut microbiome. Analysis also revealed prakriti-specific presence of Mogibacterium, Propionibacterium, Pyramidobacter, Rhodococcus in the kapha prakriti individuals Planomicrobium, Hyphomicrobium, Novosphingobium in the pitta prakriti individuals and Carnobacterium, Robiginitalea, Cetobacterium, Psychrobacter in the vata prakriti individuals. Similarly, the oral and skin microbiome also revealed presence of prakriti-specific differential abundance of diverse bacterial genera. Prakriti-specific presence of bacterial taxa was recorded and only 42% microbiome in the oral samples and 52% microbiome in the skin samples were shared. Bacteria known for preventing gut inflammation by digesting the resistant starch were abundant in the pitta prakriti individuals, who are more prone to develop gut-inflammation-related disorders. In summary, human gut, oral and skin microbiome showed presence or high abundance of few bacterial taxa across three prakriti types, suggesting their specific physiological importance.


Subject(s)
Intestines/microbiology , Medicine, Ayurvedic , Microbiota , Mouth/microbiology , Skin/microbiology , Female , Humans , Male
15.
Front Microbiol ; 9: 1229, 2018.
Article in English | MEDLINE | ID: mdl-29930546

ABSTRACT

A substantial majority of global population owns cellular phones independently to demographic factors like age, economic status, and educational attainment. In this study, we investigated the diversity of microorganisms associated with cellular phones of 27 individuals using cultivation-based methods. Cellular phones were sampled using cotton swabs and a total of 554 isolates representing different morphotypes were obtained on four growth media. Matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry could generate protein profiles for 527 isolates and species-level identification was obtained for 415 isolates. A dendrogram was constructed based on the protein profiles of the remaining isolates, to group 112 isolates under 39 different proteotypes. The representative strains of each group were selected for 16S rRNA gene and ITS region sequencing based identification. Staphylococcus, Bacillus, Micrococcus, and Pseudomonas were the most frequently encountered bacteria, and Candida, Aspergillus, Aureobasidium, and Cryptococcus were in case of fungi. At species-level the prevalence of Micrococcus luteus, Staphylococcus hominis, Staphylococcus epidermidis, Staphylococcus arlettae, Bacillus subtilis, and Candida parapsilosis was observed, most of these species are commensal microorganisms of human skin. UPGMA dendrogram and PCoA biplot generated based on the microbial communities associated with all cellular phones exhibited build-up of specific communities on cellular phones and the prevalence of objectionable microorganisms in some of the cellular phones can be attributed to the poor hygiene and sanitary practices. The study also revealed the impact of MALDI-TOF MS spectral quality on the identification results. Overall MALDI-TOF appears a powerful tool for routine microbial identification and de-replication of microorganisms. Quality filtering of MALDI-TOF MS spectrum, development of better sample processing methods and enriching the spectral database will improve the role of MALDI-TOF MS in microbial identifications.

SELECTION OF CITATIONS
SEARCH DETAIL
...