Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 11(34): 21179-21188, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-35479352

ABSTRACT

The development of high-efficiency and durable bifunctional electrocatalysts is an important and challenging topic in the area of energy storage/conversion. Herein, we prepared metallic cobalt nanoparticle decorated N-doped graphitic sheets (Co@NGr) by adopting facile pyrolysis of a mixed ligand cobalt-based MOF (CoMOF-2) as a sacrificial template displaying good OER and HER activity. The catalytic material harvested at three different pyrolytic temperatures was characterized by various analytical methods such as PXRD, SEM, TEM, Raman, and XPS analyses. The catalytic activity of the obtained hybrid composite materials towards oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) was studied. Co@NGr-900 was found to be an efficient bifunctional electrocatalyst and 10 mA cm-2 current density was afforded at an overpotential of 390 mV for OER and 340 mV for HER respectively. This study provides insight for the development of cost-effective nonprecious element-based electrocatalysts for water splitting which has relevance in energy storage and conversion. Catalytic performance is governed by the synergistic compositional effect of metallic cobalt/nitrogen-doping in the graphitic carbon increasing the electrical conductivity/active sites of the composite material.

2.
Micron ; 107: 85-93, 2018 04.
Article in English | MEDLINE | ID: mdl-29471173

ABSTRACT

The structure-property correlation in the Cu-TCNQ organometallic complex is very important for explaining its unusual electrical, optical and magnetic properties. Consequently several morphological studies and their correlation with the properties of these materials can be found in the literature, although no systematic study of various morphologies with growth conditions and their correlation has been reported to the best of our knowledge. Therefore in this manuscript the interconversion of various morphologies is reported using electron and probe microscopies. A conventional Cu TEM grid acted as the copper source to form a Cu-TCNQ complex and the complex, which formed at the surface of the TEM grid. The complex thus prepared was characterized by FTIR and Raman spectroscopic techniques. The shifting of ̵-CN from 2221 cm-1 (TCNQ) to 2201 cm-1 indicates formation of a complex and the identical nature of IR spectra in two phases indicates that they are polymorphs. The morphologies of Cu-TCNQ were followed through FE-SEM and TEM studies. Various morphologies such as needle, square tube, platelet etc. were observed as a function of time. A distinct transition from needle to platelet morphology was observed as the complex grew. The conductance of various morphologies in phase-I as well as phase-II were also measured and compared by Spreading Resistance Imaging (SRI) at different bias voltage i.e. 1 V, 3 V and 5 V.

3.
J Microsc ; 261(3): 333-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26694198

ABSTRACT

An electrochemical method for loading electroactive materials over the TEM grid is reported. The protocol has been demonstrated using polyaniline as an example. The electroactive polymer was directly deposited over the Au TEM grid, used as working electrode in a 3 electrode electrochemical cell. The undisturbed as-deposited morphologies under the influence of various counter ions and ex situ electrochemical states have been studied and compared. Contrary to behaviour in bulk the individual polyaniline fibre was found thinner at anodic potentials. The movement of counter ions as a function of the electrochemical state of the polymer was studied using STEM-EDX elemental mapping.

SELECTION OF CITATIONS
SEARCH DETAIL
...