Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Biomater Res ; 27(1): 111, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932837

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is a hematological malignancy that remains a therapeutic challenge due to the high incidence of disease relapse. To better understand resistance mechanisms and identify novel therapies, robust preclinical models mimicking the bone marrow (BM) microenvironment are needed. This study aimed to achieve an automated fabrication process of a three-dimensional (3D) AML disease model that recapitulates the 3D spatial structure of the BM microenvironment and applies to drug screening and investigational studies. METHODS: To build this model, we investigated a unique class of tetramer peptides with an innate ability to self-assemble into stable hydrogel. An automated robotic bioprinting process was established to fabricate a 3D BM (niche-like) multicellular AML disease model comprised of leukemia cells and the BM's stromal and endothelial cellular fractions. In addition, monoculture and dual-culture models were also fabricated. Leukemia cell compatibility, functionalities (in vitro and in vivo), and drug assessment studies using our model were performed. In addition, RNAseq and gene expression analysis using TaqMan arrays were also performed on 3D cultured stromal cells and primary leukemia cells. RESULTS: The selected peptide hydrogel formed a highly porous network of nanofibers with mechanical properties similar to the BM extracellular matrix. The robotic bioprinter and the novel quadruple coaxial nozzle enabled the automated fabrication of a 3D BM niche-like AML disease model with controlled deposition of multiple cell types into the model. This model supported the viability and growth of primary leukemic, endothelial, and stromal cells and recapitulated cell-cell and cell-ECM interactions. In addition, AML cells in our model possessed quiescent characteristics with improved chemoresistance attributes, resembling more the native conditions as indicated by our in vivo results. Moreover, the whole transcriptome data demonstrated the effect of 3D culture on enhancing BM niche cell characteristics. We identified molecular pathways upregulated in AML cells in our 3D model that might contribute to AML drug resistance and disease relapse. CONCLUSIONS: Our results demonstrate the importance of developing 3D biomimicry models that closely recapitulate the in vivo conditions to gain deeper insights into drug resistance mechanisms and novel therapy development. These models can also improve personalized medicine by testing patient-specific treatments.

2.
J Cell Biol ; 222(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36482480

ABSTRACT

Epilepsy is a common neurological disease worldwide, and one of its causes is genetic abnormalities. Here, we identified a point mutation in KIF4A, a member of kinesin superfamily molecular motors, in patients with neurological disorders such as epilepsy, developmental delay, and intellectual disability. KIF4 is involved in the poly (ADP-ribose) polymerase (PARP) signaling pathway, and the mutation (R728Q) strengthened its affinity with PARP1 through elongation of the KIF4 coiled-coil domain. Behavioral tests showed that KIF4-mutant mice exhibited mild developmental delay with lower seizure threshold. Further experiments revealed that the KIF4 mutation caused aberrant morphology in dendrites and spines of hippocampal pyramidal neurons through PARP1-TrkB-KCC2 pathway. Furthermore, supplementing NAD, which activates PARP1, could modulate the TrkB-KCC2 pathway and rescue the seizure susceptibility phenotype of the mutant mice. Therefore, these findings indicate that KIF4 is engaged in a fundamental mechanism regulating seizure susceptibility and could be a potential target for epilepsy treatment.


Subject(s)
Epilepsy , Seizures , Mice , Animals , Seizures/genetics , Signal Transduction , Kinesins/genetics
3.
Reprod Biol ; 17(2): 133-143, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28431992

ABSTRACT

To study the genomics/genetic factors associated with recurrent spontaneous abortion (RSA), as ∼50% of RSA are unexplained. However, chromosome abnormalities have been reported to play major role in RSA. We performed whole genome array-CGH based genomic analysis of forty four Saudi RSA patients to identify potential molecular and chromosomal abnormalities. We identified a total of 845 alterations, usually not detected by classic cytogenetic methods, in different genomic regions using a cut off value of -0.25 and 0.25 for structural loss and gain, whereas -1.0 and 0.58 were used for single copy number deletion and duplication respectively. We identified frequent (present at least in 10% of patients) alterations including three macro-alteration at 8p23.1, 10q11.21-q11.22 and 15q11.2 as well as large numbers of micro-deletions/amplifications with affected genes including 22q11.23 (GSTT1), 3p22.2 (CTDSPL), 6p21.32 (HLA), and 8p22 (MSR1). Pathway analysis of genes located in detected CNVs regions revealed the allograft rejection signaling, IL-4 signaling, and autoimmune thyroid disease signaling as the most significant canonical pathways associated with RSA. Whole genome array CGH technique can be used to identify potential genes, biofunctions and chromosomal abnormalities associated with RSA which is supported by our findings of a number of novel CNVs/genes (22q11.23/GSTT1, 3p22.2/CTDSPL, 6p21.32/HLA, 8p22/MSR1, and 14q32.33/AKT1) and pathways in patients affected with RSA. To improve diagnosis and treatment of RSA, a comprehensive procedure is needed for identification and validation of causative genes.


Subject(s)
Abortion, Habitual/genetics , Genomics/methods , Abortion, Habitual/epidemiology , Chromosome Aberrations , Chromosome Deletion , Chromosomes, Human , Comparative Genomic Hybridization , Cytogenetic Analysis , DNA Copy Number Variations , Female , Fetus , Genome-Wide Association Study , Humans , Male , Pregnancy , Saudi Arabia/epidemiology
4.
BMC Med Genet ; 17(Suppl 1): 67, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27766948

ABSTRACT

BACKGROUND: Hearing Impairment (HI) can have genetic or environmental causes and in some cases, an interplay of both. Genetic causes are difficult to determine as mutations in more than 90 genes have been shown recently to be responsible for HI. Providing a genetic diagnostic test for HI is therefore a challenge especially for ethnic groups where GJB2 mutations are shown to be rare. RESULTS: Here we show the design and implementation of an amplicon-based targeted sequencing panel that allows the simultaneous sequencing of 87 HI genes. Mutations identified included known pathogenic mutations and novel variants with unknown significance. The diagnostic rate of this panel is 28 % when only pathogenic variants were reported. However, an additional 28 % harbored recurrent combinations of novel or rare single nucleotide variants in the OTOF or PCDH15 genes. Such combinations were not identified in healthy individuals. CONCLUSIONS: Targeted sequencing approach is a very useful strategy for the identification of mutations affecting the HI genes because of its relatively fast turn-around time and cost effectiveness compared to whole-exome sequencing. Further novel or rare variants could be identified by implementing a large-scale screening of HI using our panel which will eventual lead to a higher diagnostic rate.


Subject(s)
Hearing Loss/genetics , High-Throughput Nucleotide Sequencing/methods , Adolescent , Adult , Cadherin Related Proteins , Cadherins/genetics , Case-Control Studies , Child , Child, Preschool , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , Databases, Genetic , Female , Genotype , Hearing Loss/diagnosis , Hearing Loss/pathology , High-Throughput Nucleotide Sequencing/standards , Humans , Male , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , Reproducibility of Results , Saudi Arabia , Young Adult
5.
J Huazhong Univ Sci Technolog Med Sci ; 35(3): 411-418, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26072082

ABSTRACT

A multi-centred study was designed to collect dengue epidemiologic data from government and registered private hospitals/clinics and maintained archive of frozen specimens in bio-bank to be used for future dengue epidemic control program, and assess the epidemiology of dengue fever (DF) by evaluating biochemical and oxidative status of patients. ELISA IgM antibodies test was done to confirm DF. From August 2010 to December 2011, 101 confirmed blood samples of DF patients referred to pathology lab of Jinnah Hospital Lahore were subjected to the epidemiologic assessment by evaluating the biochemical and physiological indices and alterations of circulating antioxidants. Clinical features of DF patients and effect of fever on blood components and serum proteins of liver were recorded. The hospital stay in DF, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) showed significant difference. Significant increases in serum alanine amino transferase (ALT) (P=0.000), aspartate amino transferase (AST) (P=0.000), alkaline phosphatase (ALP) (P=0.000), malondialdehyde (MDA) along with significant decreases in total protein (TP) (P=0.000), reduced glutathione (GSH) (P=0.000), superoxide dismutase (SOD), catalase (CAT) (P=0.000), and sialic acid contents (P=0.016) were observed. A positive correlation existed between bound sialic acid levels, liver enzymes and circulating antioxidants (r=0.656, P=0.016). In the present study, alterations of circulating antioxidants in DF suggest that DF might be a metabolic response to an acute, self-limiting tropical viral infection, and a consequence of the viral inflammatory process.


Subject(s)
Antioxidants/metabolism , Biomarkers/blood , Dengue/classification , Dengue/diagnosis , Adult , China , Dengue/metabolism , Diagnosis, Differential , Female , Humans , Immunoglobulin M/metabolism , Male , Middle Aged , Young Adult
6.
Article in English | WPRIM (Western Pacific) | ID: wpr-636946

ABSTRACT

A multi-centred study was designed to collect dengue epidemiologic data from government and registered private hospitals/clinics and maintained archive of frozen specimens in bio-bank to be used for future dengue epidemic control program, and assess the epidemiology of dengue fever (DF) by evaluating biochemical and oxidative status of patients. ELISA IgM antibodies test was done to confirm DF. From August 2010 to December 2011, 101 confirmed blood samples of DF patients referred to pathology lab of Jinnah Hospital Lahore were subjected to the epidemiologic assessment by evaluating the biochemical and physiological indices and alterations of circulating antioxidants. Clinical features of DF patients and effect of fever on blood components and serum proteins of liver were recorded. The hospital stay in DF, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) showed significant difference. Significant increases in serum alanine amino transferase (ALT) (P=0.000), aspartate amino transferase (AST) (P=0.000), alkaline phosphatase (ALP) (P=0.000), malondialdehyde (MDA) along with significant decreases in total protein (TP) (P=0.000), reduced glutathione (GSH) (P=0.000), superoxide dismutase (SOD), catalase (CAT) (P=0.000), and sialic acid contents (P=0.016) were observed. A positive correlation existed between bound sialic acid levels, liver enzymes and circulating antioxidants (r=0.656, P=0.016). In the present study, alterations of circulating antioxidants in DF suggest that DF might be a metabolic response to an acute, self-limiting tropical viral infection, and a consequence of the viral inflammatory process.

7.
Neurol Sci ; 35(11): 1681-8, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24810836

ABSTRACT

The objective of this study was to evaluate the effect of ethanol and pentylenetetrazol (PTZ) on the expression of dopamine receptors (D1R) and to observe the apoptotic neurodegeneration in prenatal rat cortical and hippocampal neurons at gestational days (GD) 17.5. In the present study, ethanol (100 mM) and PTZ (15 mM) were exposed to the prenatal rat cortical and hippocampal neuronal cell cultures for 1 h. For mRNA RT-PCR and for protein Western blot analysis was done to elucidate D1R, Bax, Bak, Bcl-2 and cleaved caspase-3 expression upon ethanol and PTZ exposure in neuronal cell cultures. Furthermore, ethanol and PTZ-induced apoptotic neurodegeneration was also observed using TUNEL staining and propidium iodide (PI) used as counter stain under confocal microscopy. The results of present study showed that ethanol and PTZ exposure significantly decreased D1R expression and induced neuronal death by significantly increasing the expression of pro-apoptotic Bax, Bak and decreasing anti-apoptotic protein Bcl-2 leading to the apoptosis by increasing cleaved caspase-3 expression in cortical and hippocampal primary neuronal cell cultures. Our findings indicated that ethanol and PTZ exposure to the prenatal neurons showed not only downregulation of D1R but also causes neuronal apoptosis in the developing rat brain. Further, this explains the possibility of higher risk of developmental disturbances and malformations during early developmental stage.


Subject(s)
Apoptosis/drug effects , Ethanol/toxicity , Hippocampus/drug effects , Neurons/drug effects , Prenatal Exposure Delayed Effects/metabolism , Receptors, Dopamine D1/biosynthesis , Animals , Blotting, Western , Cells, Cultured , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Convulsants/toxicity , Down-Regulation , Female , Hippocampus/metabolism , Hippocampus/pathology , In Situ Nick-End Labeling , Neurons/metabolism , Neurons/pathology , Pentylenetetrazole/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
8.
Article in English | MEDLINE | ID: mdl-24795768

ABSTRACT

Oxidative stress, lipid peroxidation, and transaminase reactions are some of the mechanisms that can lead to liver dysfunction. A time-dependent study was designed to evaluate the ability of silymarin (SLN) and glycyrrhizin (GLN) in different dosage regimens to lessen oxidative stress in the rats with hepatic injury caused by the hepatotoxin carbon tetrachloride. Wistar male albino rats (n = 60) were randomly assigned to six groups. Group A served as a positive control while groups B, C, D, E, and F received a dose of CCl4 (50% solution of CCl4 in liquid paraffin, 2 mL/kg, intraperitoneally) twice a week to induce hepatic injury. Additionally, the animals received SLN and GLN in different doses for a period of six weeks. CCl4 was found to induce hepatic injury by significantly increasing serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and thiobarbituric acid reactive substances while decreasing total protein and the activities of reduced glutathione, superoxide dismutase, and catalase. Treatment with various doses of SLN and GLN significantly reduced ALT, AST, ALP, and TBARS levels and increased GSH, SOD, and CAT levels. Our findings indicated that SLN and GLN have hepatoprotective effects against oxidative stress of the liver.

SELECTION OF CITATIONS
SEARCH DETAIL
...