Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Reprod Immunol ; 158: 103972, 2023 08.
Article in English | MEDLINE | ID: mdl-37302363

ABSTRACT

Pregnancy establishment in bovines requires maternal immune cell modulation. Present study investigated possible role of immunosuppressive indolamine-2, 3-dioxygenase 1 (IDO1) enzyme in the alteration of neutrophil (NEUT) and peripheral blood mononuclear cells (PBMCs) functionality of crossbred cows. Blood was collected from non-pregnant (NP) and pregnant (P) cows, followed by isolation of NEUT and PBMCs. Plasma pro-inflammatory (IFNγ and TNFα) and anti-inflammatory cytokines (IL-4 and IL-10) were estimated by ELISA and analysis of IDO1 gene in NEUT and PBMCs by RT-qPCR. Neutrophil functionality was assessed by chemotaxis, measuring activity of myeloperoxidase and ß-D glucuronidase enzyme and evaluating nitric oxide production. Changes in PBMCs functionality was determined by transcriptional expression of pro-inflammatory (IFNγ, TNFα) and anti-inflammatory cytokine (IL-4, IL-10, TGFß1) genes. Significantly elevated (P < 0.05) anti-inflammatory cytokines, increased IDO1 expression, reduced NEUT velocity, MPO activity and NO production observed only in P cows. Significantly higher (P < 0.05) expression of anti-inflammatory cytokines and TNFα genes were observed in PBMCs. Study highlights possible role of IDO1 in modulating the immune cell and cytokine activity during early pregnancy and may be targeted as early pregnancy biomarkers.


Subject(s)
Dioxygenases , Tumor Necrosis Factor-alpha , Pregnancy , Female , Cattle , Animals , Tumor Necrosis Factor-alpha/metabolism , Interleukin-10/genetics , Leukocytes, Mononuclear , Pregnancy Outcome , Interleukin-4/genetics , Cytokines , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
2.
Microb Pathog ; 161(Pt A): 105232, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34627939

ABSTRACT

INTRODUCTION: Despite causing one of the most dreaded diseases of small ruminants, relatively little is known about the pathogenic events, antigen distribution and the cells responsible for the uptake and transmission of peste-des-petits-ruminants virus (PPRV) during primitive stages of infection. OBJECTIVES: We aimed at deciphering the sequential tissue tropism, pathological events and putative role of M2c macrophages during incubatory, prodromal and invasive stages of PPRV infection. METHODOLOGY: A total of 10 goats were sequentially sacrificed at 1, 2, 3, 4, and 5 days post-infection (dpi, n = 2 per time-point) following intranasal inoculation with a highly virulent strain of PPRV (lineage IV PPRV/Izatnagar/94). Histological evaluation to assess PPRV mediated pathologies, RT-qPCR and immunohistochemistry (IHC) to decipher sequential virus distribution, and dual immunolabelling to determine the role of M2c macrophage in early PPRV uptake and transmission was performed. RESULTS: PPRV/Izatnagar/94 caused major pathologies in the lung tissues. Unprecedentedly, PPRV nucleic acid and antigens were detected in various tissues as early as one dpi. RT-qPCR revealed PPRV in the nasal cavity, trachea, bronchi, tongue and lymph nodes draining these tissues from 1 dpi. IHC affirms cells residing in the lamina propria and submucosa of the respiratory tract and tongue and peribronchiolar areas of lungs as the primary target of PPRV. Following initial replication in the respiratory tract, PPRV is transmitted to the regional lymph nodes where primary viral amplification occurs. After viraemia and secondary replication in generalized lymphoid tissues, PPRV infects and replicates in the epithelial cells. Further, we localized CD163+ M2c macrophages in the goat tissues, but dual IHC elucidated that M2c macrophages do not facilitate uptake and transmission of PPRV during the early stages of infection. CONCLUSION: Our study substantiates the disease establishment process and pathogenesis of PPRV/Izatnagar/94 during the incubatory and prodromal stages of infection. Further, we have also observed M2c macrophage distribution in the goat tissues and demonstrated that they do not pick and transmit PPRV.


Subject(s)
Goat Diseases , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Animals , DNA Viruses , Goats , Peste-des-petits-ruminants virus/genetics
3.
J Reprod Immunol ; 140: 103148, 2020 08.
Article in English | MEDLINE | ID: mdl-32447181

ABSTRACT

An early and precise diagnosis of pregnancy in cows is critical to short the calving interval and to improve their reproductive efficiency. Neutrophils are the first blood cells to sensitize the embryo in the uterus and participate in maternal recognition of pregnancy after getting induced by interferon tau (IFNτ). To study the protein abundance ratio, blood samples were collected on 0th, 10th, 18th and 36th day post-artificial insemination (AI) from crossbred Karan Fries cows. Neutrophils were isolated through density gradient centrifugation and studied for protein abundance by high-performance liquid chromatography coupled with mass spectrometry (LC-MS). Protein abundance ratios for Myxovirus resistance (MX1 and MX2) were found to be higher (P < 0.05) on day 10 and day 18 post-AI, whereas Oligoadenylate synthetase-1 (OAS1) and Interferon stimulated gene-15 ubiquitin-like modifier (ISG15) proteins were more abundant on day 18 post-AI. The relative mRNA expressions of these molecules were also studied by qPCR. The gene expression of ISG15, MX1, MX2 and OAS1 was found to be higher (P < 0.05) on day 10th, 18th and 36th post-AI compared to day 0. The study indicates that ISGs on blood neutrophils are essential for the establishment of pregnancy and may be targeted as potential biomarkers for pregnancy diagnosis in cows.


Subject(s)
Interferon Type I/metabolism , Neutrophils/immunology , Pregnancy Proteins/metabolism , Pregnancy , Animals , Biomarkers , Cattle , Female , Gene Expression Profiling , Interferon Type I/genetics , Myxovirus Resistance Proteins/genetics , Pregnancy Proteins/genetics , Progesterone/metabolism , Proteomics , Ubiquitins/genetics
4.
Virusdisease ; 30(3): 465-468, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31803815

ABSTRACT

Peste-des-petits ruminants is a transboundary viral disease of small ruminants caused by small ruminant morbillivirus (SRMV). In the present study, the full-length V gene of SRMV was constructed through site-directed mutagenesis from the P gene transcripts of the vaccine virus (Sungri/96 India) and expressed in a prokaryotic expression system. In animals, the seroconversion against this protein occurs from 14-days and is getting produced from 48 h in cell culture. An indirect ELISA developed using this protein has a relative sensitivity and relative specificity of 77.73% and 73.775%, respectively as compared to c-ELISA. In this ELISA, it was observed that most of the convalescent animals elicited higher level of antibodies than vaccinated animals.

5.
Front Immunol ; 10: 1463, 2019.
Article in English | MEDLINE | ID: mdl-31333643

ABSTRACT

In this study, transcriptome analysis of PPRV infected PBMC subsets-T helper cells, T cytotoxic cells, monocytes, and B lymphocytes was done to delineate their role in host response. PPRV was found to infect lymphocytes and not monocytes. The established receptor for PPRV-SLAM was found downregulated in lymphocytes and non-differentially expressed in monocytes. A profound deviation in the global gene expression profile with a large number of unique upregulated genes (851) and downregulated genes (605) was observed in monocytes in comparison to lymphocytes. ISGs-ISG15, Mx1, Mx2, RSAD2, IFIT3, and IFIT5 that play a role in antiviral response and the genes for viral sensors-MDA5, LGP2, and RIG1, were found to be upregulated in lymphocytes and downregulated in monocytes. The transcription factors-IRF-7 and STAT-1 that regulate expression of most of the ISGs were found activated in lymphocytes and not in monocytes. Interferon signaling pathway and RIG1 like receptor signaling pathway were found activated in lymphocytes and not in monocytes. This contrast in gene expression profiles and signaling pathways indicated the predominant role of lymphocytes in generating the antiviral response against PPRV in goats, thus, giving us new insights into host response to PPRV.


Subject(s)
B-Lymphocytes/immunology , Goat Diseases/immunology , Monocytes/immunology , Peste-des-petits-ruminants virus/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Gene Expression Profiling , Goat Diseases/virology , Goats/immunology , Host-Pathogen Interactions/immunology , Peste-des-Petits-Ruminants/immunology , Peste-des-Petits-Ruminants/virology , Signaling Lymphocytic Activation Molecule Family Member 1/metabolism
6.
Sci Rep ; 8(1): 15969, 2018 10 29.
Article in English | MEDLINE | ID: mdl-30374051

ABSTRACT

Identification of suitable candidate reference genes is an important prerequisite for validating the gene expression data obtained from downstream analysis of RNA sequencing using quantitative real time PCR (qRT-PCR). Though existence of a universal reference gene is myth, commonly used reference genes can be assessed for expression stability to confer their suitability to be used as candidate reference genes in gene expression studies. In this study, we evaluated the expression stability of ten most commonly used reference genes (GAPDH, ACTB, HSP90, HMBS, 18S rRNA, B2M, POLR2A, HPRT1, ACAC, YWHAZ) in fourteen different Peste des petits ruminants virus (PPRV) infected tissues of goats and sheep. RefFinder and RankAggreg software were used to deduce comprehensive ranking of reference genes. Our results suggested HMBS and B2M in goats and HMBS and HPRT1 in sheep can be used as suitable endogenous controls in gene expression studies of PPRV infection irrespective of tissues and condition as a whole, thus eliminating the use of tissue specific/ condition specific endogenous controls. We report for the first time suitable reference genes for gene expression studies in PPRV infected tissues. The reference genes determined here can be useful for future studies on gene expression in sheep and goat infected with PPRV, thus saving extra efforts and time of repeating the reference gene determination and validation.


Subject(s)
Goat Diseases/pathology , Peste-des-petits-ruminants virus/physiology , Sheep Diseases/pathology , Animals , Gene Expression Regulation , Goat Diseases/genetics , Goat Diseases/virology , Goats , Hydroxymethylbilane Synthase/genetics , Hypoxanthine Phosphoribosyltransferase/genetics , Lung/metabolism , Peste-des-petits-ruminants virus/isolation & purification , Real-Time Polymerase Chain Reaction , Sheep , Sheep Diseases/genetics , Sheep Diseases/virology , Spleen/metabolism , beta 2-Microglobulin/genetics
7.
Vet World ; 8(9): 1059-62, 2015 Sep.
Article in English | MEDLINE | ID: mdl-27047198

ABSTRACT

AIM: This study was undertaken with the aim to compare and establish the genetic relatedness between classical swine fever virus (CSFV) genogroup 2.2 isolate and pestivirus reference strains. MATERIALS AND METHODS: The available complete genome sequences of CSFV/IND/UK/LAL-290 strain and other pestivirus reference strains were retrieved from GenBank. The complete genome sequence, complete open reading frame, 5' and 3' non-coding region (NCR) sequences were analyzed and compared with reference pestiviruses strains. Clustal W model in MegAlign program of Lasergene 6.0 software was used for analysis of genetic heterogeneity. Phylogenetic analysis was carried out using MEGA 6.06 software package. RESULTS: The complete genome sequence alignment of CSFV/IND/UK/LAL-290 isolate and reference pestivirus strains showed 58.9-72% identities at the nucleotide level and 50.3-76.9% at amino acid level. Sequence homology of 5' and 3' NCRs was found to be 64.1-82.3% and 22.9-71.4%, respectively. In phylogenetic analysis, overall tree topology was found similar irrespective of sequences used in this study; however, whole genome phylogeny of pestivirus formed two main clusters, which further distinguished into the monophyletic clade of each pestivirus species. CSFV/IND/UK/LAL-290 isolate placed with the CSFV Eystrup strain in the same clade with close proximity to border disease virus and Aydin strains. CONCLUSION: CSFV/IND/UK/LAL-290 exhibited the analogous genomic organization to those of all reference pestivirus strains. Based on sequence identity and phylogenetic analysis, the isolate showed close homology to Aydin/04-TR virus and distantly related to Bungowannah virus.

8.
Genome Announc ; 2(3)2014 May 08.
Article in English | MEDLINE | ID: mdl-24812219

ABSTRACT

We report the first complete genome sequence of a classical swine fever (CSF) virus of subgenotype 2.2. The virus (CSFV/IND/UK/LAL-290) was isolated from the Uttarakhand state of India from a backyard pig suspected of having CSF. This genome sequence will give useful insight for future molecular epidemiological studies and the development of an effective vaccine in India.

SELECTION OF CITATIONS
SEARCH DETAIL
...