Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38843116

ABSTRACT

RATIONAL: Ground glass opacities (GGO) in the absence of interstitial lung disease are understudied. OBJECTIVE: To assess the association of GGO with white blood cells (WBCs) and progression of quantified chest CT emphysema. METHODS: We analyzed data of participants in the Subpopulations and Intermediate Outcome Measures In COPD Study (SPIROMICS). Chest radiologists and pulmonologists labeled regions of the lung as GGO and adaptive multiple feature method (AMFM) trained the computer to assign those labels to image voxels and quantify the volume of the lung with GGO (%GGOAMFM). We used multivariable linear regression, zero-inflated negative binomial, and proportional hazards regression models to assess the association of %GGOAMFM with WBC, changes in %emphysema, and clinical outcomes. MEASUREMENTS AND MAIN RESULTS: Among 2,714 participants, 1,680 had COPD and 1,034 had normal spirometry. Among COPD participants, based on the multivariable analysis, current smoking and chronic productive cough was associated with higher %GGOAMFM. Higher %GGOAMFM was cross-sectionally associated with higher WBCs and neutrophils levels. Higher %GGOAMFM per interquartile range at visit 1 (baseline) was associated with an increase in emphysema at one-year follow visit by 11.7% (Relative increase; 95%CI 7.5-16.1%;P<0.001). We found no association between %GGOAMFM and one-year FEV1 decline but %GGOAMFM was associated with exacerbations and all-cause mortality during a median follow-up time of 1,544 days (Interquartile Interval=1,118-2,059). Among normal spirometry participants, we found similar results except that %GGOAMFM was associated with progression to COPD at one-year follow-up. CONCLUSIONS: Our findings suggest that GGOAMFM is associated with increased systemic inflammation and emphysema progression.

2.
IEEE Trans Med Imaging ; PP2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373126

ABSTRACT

Chest computed tomography (CT) at inspiration is often complemented by an expiratory CT to identify peripheral airways disease. Additionally, co-registered inspiratory-expiratory volumes can be used to derive various markers of lung function. Expiratory CT scans, however, may not be acquired due to dose or scan time considerations or may be inadequate due to motion or insufficient exhale; leading to a missed opportunity to evaluate underlying small airways disease. Here, we propose LungViT - a generative adversarial learning approach using hierarchical vision transformers for translating inspiratory CT intensities to corresponding expiratory CT intensities. LungViT addresses several limitations of the traditional generative models including slicewise discontinuities, limited size of generated volumes, and their inability to model texture transfer at volumetric level. We propose a shifted-window hierarchical vision transformer architecture with squeeze-and-excitation decoder blocks for modeling dependencies between features. We also propose a multiview texture similarity distance metric for texture and style transfer in 3D. To incorporate global information into the training process and refine the output of our model, we use ensemble cascading. LungViT is able to generate large 3D volumes of size 320 × 320 × 320. We train and validate our model using a diverse cohort of 1500 subjects with varying disease severity. To assess model generalizability beyond the development set biases, we evaluate our model on an out-of-distribution external validation set of 200 subjects. Clinical validation on internal and external testing sets shows that synthetic volumes could be reliably adopted for deriving clinical endpoints of chronic obstructive pulmonary disease.

3.
Radiology ; 307(5): e222998, 2023 06.
Article in English | MEDLINE | ID: mdl-37338355

ABSTRACT

Background Approximately half of adults with chronic obstructive pulmonary disease (COPD) remain undiagnosed. Chest CT scans are frequently acquired in clinical practice and present an opportunity to detect COPD. Purpose To assess the performance of radiomics features in COPD diagnosis using standard-dose and low-dose CT models. Materials and Methods This secondary analysis included participants enrolled in the Genetic Epidemiology of COPD, or COPDGene, study at baseline (visit 1) and 10 years after baseline (visit 3). COPD was defined by a forced expiratory volume in the 1st second of expiration to forced vital capacity ratio less than 0.70 at spirometry. The performance of demographics, CT emphysema percentage, radiomics features, and a combined feature set derived from inspiratory CT alone was evaluated. CatBoost (Yandex), a gradient boosting algorithm, was used to perform two classification experiments to detect COPD; the two models were trained and tested on standard-dose CT data from visit 1 (model I) and low-dose CT data from visit 3 (model II). Classification performance of the models was evaluated using area under the receiver operating characteristic curve (AUC) and precision-recall curve analysis. Results A total of 8878 participants (mean age, 57 years ± 9 [SD]; 4180 female, 4698 male) were evaluated. Radiomics features in model I achieved an AUC of 0.90 (95% CI: 0.88, 0.91) in the standard-dose CT test cohort versus demographics (AUC, 0.73; 95% CI: 0.71, 0.76; P < .001), emphysema percentage (AUC, 0.82; 95% CI 0.80, 0.84; P < .001), and combined features (AUC, 0.90; 95% CI: 0.89, 0.92; P = .16). Model II, trained on low-dose CT scans, achieved an AUC of 0.87 (95% CI: 0.83, 0.91) on the 20% held-out test set for radiomics features compared with demographics (AUC, 0.70; 95% CI: 0.64, 0.75; P = .001), emphysema percentage (AUC, 0.74; 95% CI: 0.69, 0.79; P = .002), and combined features (AUC, 0.88; 95% CI: 0.85, 0.92; P = .32). Density and texture features were the majority of the top 10 features in the standard-dose model, whereas shape features of lungs and airways were significant contributors in the low-dose CT model. Conclusion A combination of features representing parenchymal texture and lung and airway shape on inspiratory CT scans can be used to accurately detect COPD. ClinicalTrials.gov registration no. NCT00608764 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Vliegenthart in this issue.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Adult , Male , Humans , Female , Middle Aged , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging
4.
Med Phys ; 50(9): 5698-5714, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36929883

ABSTRACT

BACKGROUND: Chest computed tomography (CT) enables characterization of pulmonary diseases by producing high-resolution and high-contrast images of the intricate lung structures. Deformable image registration is used to align chest CT scans at different lung volumes, yielding estimates of local tissue expansion and contraction. PURPOSE: We investigated the utility of deep generative models for directly predicting local tissue volume change from lung CT images, bypassing computationally expensive iterative image registration and providing a method that can be utilized in scenarios where either one or two CT scans are available. METHODS: A residual regression convolutional neural network, called Reg3DNet+, is proposed for directly regressing high-resolution images of local tissue volume change (i.e., Jacobian) from CT images. Image registration was performed between lung volumes at total lung capacity (TLC) and functional residual capacity (FRC) using a tissue mass- and structure-preserving registration algorithm. The Jacobian image was calculated from the registration-derived displacement field and used as the ground truth for local tissue volume change. Four separate Reg3DNet+ models were trained to predict Jacobian images using a multifactorial study design to compare the effects of network input (i.e., single image vs. paired images) and output space (i.e., FRC vs. TLC). The models were trained and evaluated on image datasets from the COPDGene study. Models were evaluated against the registration-derived Jacobian images using local, regional, and global evaluation metrics. RESULTS: Statistical analysis revealed that both factors - network input and output space - were significant determinants for change in evaluation metrics. Paired-input models performed better than single-input models, and model performance was better in the output space of FRC rather than TLC. Mean structural similarity index for paired-input models was 0.959 and 0.956 for FRC and TLC output spaces, respectively, and for single-input models was 0.951 and 0.937. Global evaluation metrics demonstrated correlation between registration-derived Jacobian mean and predicted Jacobian mean: coefficient of determination (r2 ) for paired-input models was 0.974 and 0.938 for FRC and TLC output spaces, respectively, and for single-input models was 0.598 and 0.346. After correcting for effort, registration-derived lobar volume change was strongly correlated with the predicted lobar volume change: for paired-input models r2 was 0.899 for both FRC and TLC output spaces, and for single-input models r2 was 0.803 and 0.862, respectively. CONCLUSIONS: Convolutional neural networks can be used to directly predict local tissue mechanics, eliminating the need for computationally expensive image registration. Networks that use paired CT images acquired at TLC and FRC allow for more accurate prediction of local tissue expansion compared to networks that use a single image. Networks that only require a single input image still show promising results, particularly after correcting for effort, and allow for local tissue expansion estimation in cases where multiple CT scans are not available. For single-input networks, the FRC image is more predictive of local tissue volume change compared to the TLC image.


Subject(s)
Lung , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging , Lung Volume Measurements , Algorithms , Neural Networks, Computer , Image Processing, Computer-Assisted
5.
Lancet Digit Health ; 5(2): e83-e92, 2023 02.
Article in English | MEDLINE | ID: mdl-36707189

ABSTRACT

BACKGROUND: Quantitative CT is becoming increasingly common for the characterisation of lung disease; however, its added potential as a clinical tool for predicting severe exacerbations remains understudied. We aimed to develop and validate quantitative CT-based models for predicting severe chronic obstructive pulmonary disease (COPD) exacerbations. METHODS: We analysed the Subpopulations and Intermediate Outcome Measures In COPD Study (SPIROMICS) cohort, a multicentre study done at 12 clinical sites across the USA, of individuals aged 40-80 years from four strata: individuals who never smoked, individuals who smoked but had normal spirometry, individuals who smoked and had mild to moderate COPD, and individuals who smoked and had severe COPD. We used 3-year follow-up data to develop logistic regression classifiers for predicting severe exacerbations. Predictors included age, sex, race, BMI, pulmonary function, exacerbation history, smoking status, respiratory quality of life, and CT-based measures of density gradient texture and airway structure. We externally validated our models in a subset from the Genetic Epidemiology of COPD (COPDGene) cohort. Discriminative model performance was assessed using the area under the receiver operating characteristic curve (AUC), which was also compared with other predictors, including exacerbation history and the BMI, airflow obstruction, dyspnoea, and exercise capacity (BODE) index. We evaluated model calibration using calibration plots and Brier scores. FINDINGS: Participants in SPIROMICS were enrolled between Nov 12, 2010, and July 31, 2015. Participants in COPDGene were enrolled between Jan 10, 2008, and April 15, 2011. We included 1956 participants from the SPIROMICS cohort who had complete 3-year follow-up data: the mean age of the cohort was 63·1 years (SD 9·2) and 1017 (52%) were men and 939 (48%) were women. Among the 1956 participants, 434 (22%) had a history of at least one severe exacerbation. For the CT-based models, the AUC was 0·854 (95% CI 0·852-0·855) for at least one severe exacerbation within 3 years and 0·931 (0·930-0·933) for consistent exacerbations (defined as ≥1 acute episode in each of the 3 years). Models were well calibrated with low Brier scores (0·121 for at least one severe exacerbation; 0·039 for consistent exacerbations). For the prediction of at least one severe event during 3-year follow-up, AUCs were significantly higher with CT biomarkers (0·854 [0·852-0·855]) than exacerbation history (0·823 [0·822-0·825]) and BODE index 0·812 [0·811-0·814]). 6965 participants were included in the external validation cohort, with a mean age of 60·5 years (SD 8·9). In this cohort, AUC for at least one severe exacerbation was 0·768 (0·767-0·769; Brier score 0·088). INTERPRETATION: CT-based prediction models can be used for identification of patients with COPD who are at high risk of severe exacerbations. The newly identified CT biomarkers could potentially enable investigation into underlying disease mechanisms responsible for exacerbations. FUNDING: National Institutes of Health and the National Heart, Lung, and Blood Institute.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Quality of Life , Male , Humans , Female , Middle Aged , Retrospective Studies , Forced Expiratory Volume , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Biomarkers , Tomography, X-Ray Computed
6.
J Imaging ; 8(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36422058

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is an umbrella term used to define a collection of inflammatory lung diseases that cause airflow obstruction and severe damage to the lung parenchyma. This study investigated the robustness of image-registration-based local biomechanical properties of the lung in individuals with COPD as a function of Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage. Image registration was used to estimate the pointwise correspondences between the inspiration (total lung capacity) and expiration (residual volume) computed tomography (CT) images of the lung for each subject. In total, three biomechanical measures were computed from the correspondence map: the Jacobian determinant; the anisotropic deformation index (ADI); and the slab-rod index (SRI). CT scans from 245 subjects with varying GOLD stages were analyzed from the SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS). Results show monotonic increasing or decreasing trends in the three biomechanical measures as a function of GOLD stage for the entire lung and on a lobe-by-lobe basis. Furthermore, these trends held across all five image registration algorithms. The consistency of the five image registration algorithms on a per individual basis is shown using Bland-Altman plots.

SELECTION OF CITATIONS
SEARCH DETAIL
...