Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 406: 130976, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879056

ABSTRACT

This study aimed to understand the wastewater treatment and electricity generation performance besides the microbial communities of the integrated Hydroponics-Microbial Electrochemical Technology (iHydroMET) systems operated with water-saturated and water-unsaturated reactors. The organics removal was slightly higher in the water-unsaturated system (93 ± 4 %) than in the water-saturated system (87 ± 2 %). The total nitrogen removal and electric voltage were considerably higher in the water-saturated system (42 ± 5 %; 111 ± 8 V per reactor) than in the water-unsaturated system (18 ± 3 %; 95 ± 9 V per reactor). The enhanced organics and nitrogen removal and high voltage output in respective conditions were due to the dominance of polysaccharide-degrading aerobes (e.g., Pirellula), anammox bacteria (e.g., Anammoximicrobium), denitrifiers (e.g., Thauera and Rheinheimera), and electroactive microorganisms (e.g., Geobacter). The differential performance governed by distinct microbial communities under the tested conditions indicates that an appropriate balancing of water saturation and unsaturation in reactors is crucial to achieving optimum iHydroMET performance.


Subject(s)
Bacteria , Bioreactors , Nitrogen , Bioreactors/microbiology , Bacteria/metabolism , Hydroponics/methods , Wastewater/microbiology , Water Purification/methods , Electrochemical Techniques/methods , Electricity , Water/chemistry , Bioelectric Energy Sources/microbiology
2.
Environ Microbiol ; 24(11): 5066-5081, 2022 11.
Article in English | MEDLINE | ID: mdl-36066180

ABSTRACT

The extracellular electron transfer (EET)-capable electroactive microorganisms (EAMs) play crucial roles in mineral cycling and interspecies electron transfer in different environments and are used as biocatalysts in microbial electrochemical technologies. Studying EAMs from extreme environments is desired to advance the electromicrobiology discipline, understanding their unique metabolic traits with implications to extreme microbiology, and develop specific bioelectrochemical applications. Here, we present a novel haloalkaliphilic bacterium named Geoalkalibacter halelectricus SAP-1, isolated from a microbial electroactive biofilm enriched from the haloalkaline lake sediments. It is a rod-shaped Gram-negative heterotrophic anaerobe that uses various carbon and energy sources and respires on soluble and insoluble terminal electron acceptors. Besides 16S-rRNA and whole-genome sequence-based phylogeny, the GGDC values of 21.7%, ANI of 78.5%, and 2.77% genomic DNA GC content difference with the closest validly named species Geoalkalibacter ferrihydriticus (DSM 17813T ) confirmed its novelty. When grown with the solid-state electrode as the only electron acceptor, it produced 460 ± 23 µA/cm2 bioelectrocatalytic current, thereby confirming its electroactivity. Further electrochemical analysis revealed the presence of membrane redox components with a high formal potential, putatively involved in the direct mode of EET. These are distinct from EET components reported for any known electroactive microorganisms, including well-studied Geobacter spp., Shewanella spp., and Desulfuromonas acetexigens. The capabilities of G. halelectricus SAP-1 to respire on soluble and insoluble electron acceptors including fumarate, SO4 2- , Fe3+ , and Mn4+ suggests its role in cycling these elements in haloalkaline environments.


Subject(s)
Geobacter , Shewanella , Electrons , Geobacter/genetics , Electron Transport , Shewanella/metabolism , Minerals/metabolism
3.
STAR Protoc ; 3(1): 101114, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35118426

ABSTRACT

Electroactive microorganisms (EAMs) are a group of microbes that can access solid extracellular electron donors or acceptors via extracellular electron transfer processes. EAMs are useful in developing various microbial electrochemical technologies. This protocol describes the use of bioelectrochemical systems (BESs) to enrich EAMs at the cathode from an extreme haloalkaline habitat. It also provides information for a detailed characterization of enriched cathodic biofilms via various cross-disciplinary techniques, including electrochemical, analytical, microscopic, and gene sequencing techniques. For complete details on the use and execution of this protocol, please refer to Chaudhary et al. (2021).


Subject(s)
Bioelectric Energy Sources , Biofilms , Electrochemical Techniques , Electron Transport
4.
Bioresour Technol ; 347: 126663, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35017088

ABSTRACT

Electroactive microorganisms (EAMs) use extracellular electron transfer (EET) processes to access insoluble electron donors or acceptors in cellular respiration. These are used in developing microbial electrochemical technologies (METs) for biosensing and bioelectronics applications and the valorization of liquid and gaseous wastes. EAMs from extreme environments can be useful to overcome the existing limitations of METs operated with non-extreme microorganisms. Studying extreme EAMs is also necessary to improve understanding of respiratory processes involving EET. This article first discusses the advantages of using extreme EAMs in METs and summarizes the diversity of EAMs from different extreme environments. It is followed by a detailed discussion on their use as biocatalysts in various bioprocessing applications via bioelectrochemical systems. Finally, the challenges associated with operating METs under extreme conditions and promising research opportunities on fundamental and applied aspects of extreme EAMs are presented.


Subject(s)
Bioelectric Energy Sources , Extremophiles , Electrodes , Electron Transport , Extreme Environments
5.
iScience ; 24(6): 102682, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34195563

ABSTRACT

Electrotrophic microorganisms have not been well studied in extreme environments. Here, we report on the nitrate-reducing cathodic microbial biofilm from a haloalkaline environment. The biofilm enriched via electrochemical approach under 9.5 pH and 20 g NaCl/L salinity conditions achieved - 43.5 ± 7.2 µA / cm 2 current density and 49.5 ± 13.2 % nitrate reduction efficiency via partial and complete denitrification. Voltammetric characterization of the biocathodes revealed a redox center with - 0.294 ± 0.003 V (vs. Ag/AgCl) formal potential putatively involved in the electron uptake process. The lack of soluble redox mediators and hydrogen-driven nitrate reduction suggests direct-contact cathodic electron uptake by the nitrate-reducing microorganisms in the enriched biofilm. 16S-rRNA amplicon sequencing of the cathodic biofilm revealed the presence of unreported Pseudomonas, Natronococcus, and Pseudoalteromonas spp. at 31.45 % , 11.82 % , and 9.69 % relative sequence abundances, respectively. The enriched nitrate-reducing microorganisms also reduced nitrate efficiently using soluble electron donors found in the lake sediments, thereby suggesting their role in N-cycling in such environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...