Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Oncog ; 28(2): 63-72, 2023.
Article in English | MEDLINE | ID: mdl-37830216

ABSTRACT

Human papilloma virus (HPV), one of the most common sexually transmitted infections, plays a pivotal role in head and neck cancer, primarily oral and oropharyngeal squamous cell carcinomas. HPV is a vaccine-preventable disease that also contributes to cervical cancer. Although HPV vaccination effectively protects the individual against all HPV-associated human carcinomas, the awareness of HPV vaccination and its acceptance is poor in developing nations like India. India has a very high burden of oral cancer, and, unfortunately, the morbidity and mortality rates are also high as the cancer is often detected at an advanced stage. In this review, we explore the prevalence of HPV-associated head and neck squamous cell carcinoma among the Indian population and the awareness of HPV vaccination among Indian youth. Since the prognosis for HPV-associated head and neck squamous cell carcinoma is good, early diagnosis of the cancer is crucial in improving the outcome of the treatment modalities. Efforts are needed to create and increase awareness of HPV vaccination. Routine screening for HPV infection in oral mucosa can prevent the silent epidemic from taking the lives of many young people.


Subject(s)
Head and Neck Neoplasms , Papillomavirus Infections , Female , Adolescent , Humans , Squamous Cell Carcinoma of Head and Neck , Human Papillomavirus Viruses , Papillomavirus Infections/complications , Papillomavirus Infections/epidemiology , Papillomavirus Infections/prevention & control , Prevalence , Papillomaviridae , Vaccination
2.
Plants (Basel) ; 11(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36432862

ABSTRACT

Moringa oleifera Lam. (MO) is a fast-growing drought-resistant tree belonging to the family Moringaceae and native to the Indian subcontinent and cultivated and/or naturalized worldwide with a semi-arid climate. MO is also popularly known as a miracle tree for its repertoire of nutraceutical, pharmacological, and phytochemical properties. The MO germplasm is collected, conserved, and maintained by various institutions across the globe. Various morphological, biochemical, and molecular markers are used for determining the genetic diversity in MO accessions. A higher yield of leaves and pods is often desirable for making various products with commercial viability and amenable for trade in the international market. Therefore, breeding elite varieties adapted to local agroclimatic conditions and in vitro propagation are viable and sustainable approaches. Here, we provide a comprehensive overview of MO germplasm conservation and various markers that are employed for assessing the genetic diversity among them. Further, breeding and in vitro propagation of MO for various desirable agronomic traits are discussed. Finally, trade and commerce of various functional and biofortified foods and non-food products are enumerated albeit with a need for a rigorous and stringent toxicity evaluation.

3.
J Comput Aided Mol Des ; 30(5): 401-12, 2016 05.
Article in English | MEDLINE | ID: mdl-27160393

ABSTRACT

Mutations in the protein affect not only the structure of protein, but also its function and stability. Prediction of mutant protein stability with accuracy is desired for uncovering the molecular aspects of diseases and design of novel proteins. Many advanced computational approaches have been developed over the years, to predict the stability and function of a mutated protein. These approaches based on structure, sequence features and combined features (both structure and sequence features) provide reasonably accurate estimation of the impact of amino acid substitution on stability and function of protein. Recently, consensus tools have been developed by incorporating many tools together, which provide single window results for comparison purpose. In this review, a useful guide for the selection of tools that can be employed in predicting mutated proteins' stability and disease causing capability is provided.


Subject(s)
Amino Acid Substitution/genetics , Mutant Proteins/chemistry , Protein Stability , Algorithms , Computational Biology , Mutant Proteins/genetics , Mutation , Sequence Analysis, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...