Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 46(6): 888-896, 2018 06.
Article in English | MEDLINE | ID: mdl-29602798

ABSTRACT

The major objective of this study was to investigate the association of genetic and nongenetic factors with variability in protein abundance and in vitro activity of the androgen-metabolizing enzyme UGT2B17 in human liver microsomes (n = 455). UGT2B17 abundance was quantified by liquid chromatography-tandem mass spectrometry proteomics, and enzyme activity was determined by using testosterone and dihydrotestosterone as in vitro probe substrates. Genotyping or gene resequencing and mRNA expression were also evaluated. Multivariate analysis was used to test the association of UGT2B17 copy number variation, single nucleotide polymorphisms (SNPs), age, and sex with its mRNA expression, abundance, and activity. UGT2B17 gene copy number and SNPs (rs7436962, rs9996186, rs28374627, and rs4860305) were associated with gene expression, protein levels, and androgen glucuronidation rates in a gene dose-dependent manner. UGT2B17 protein (mean ± S.D. picomoles per milligram of microsomal protein) is sparsely expressed in children younger than 9 years (0.12 ± 0.24 years) but profoundly increases from age 9 years to adults (∼10-fold) with ∼2.6-fold greater abundance in males than in females (1.2 vs. 0.47). Association of androgen glucuronidation with UGT2B15 abundance was observed only in the low UGT2B17 expressers. These data can be used to predict variability in the metabolism of UGT2B17 substrates. Drug companies should include UGT2B17 in early phenotyping assays during drug discovery to avoid late clinical failures.


Subject(s)
Androgens/metabolism , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Liver/metabolism , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , DNA Copy Number Variations/genetics , Female , Genotype , Humans , Inactivation, Metabolic/genetics , Infant , Infant, Newborn , Male , Microsomes, Liver/metabolism , Middle Aged , Polymorphism, Single Nucleotide/genetics , Testosterone/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...